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ABSTRACT: Molecular mechanics (MM) is now widely used for modeling potential
energy surfaces of large organic molecules. All MM schemes use ad hoc forms for the
potential functions and parameters specially adjusted to fit experimental or quantum
chemical data. In this work we attempt to deduce a generic MM scheme starting from a
local quantum mechanical description of molecular electronic structure. The basis for
this derivation is the trial electronic wave function in the form of antisymmetrized
product of strictly localized geminals. The MM scheme obtained does not require
adjusting any parameters. The quality of numerical estimates obtained by this scheme is
analyzed. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem 88: 403–413, 2002
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1. Introduction

T he molecular mechanics (MM) [1, 2] numerical
schemes are widely used for modeling potential

energy surfaces (PESs) of large molecular systems.
The practical usefulness of the MM schemes is obvi-
ous: They provide the equilibrium geometries, dy-
namic matrices, and other features of the systems of
large size when the quantum chemical procedures
become inapplicable due to enormous computational
costs. The MM results are sufficiently accurate for

many purposes and for large objects MM schemes are
the best considering the cost–efficiency ratio.

Despite the intense employment of the MM
schemes they remain purely empirical and are only
supported by the agreement of calculated and exper-
imentally observed quantities. Such level of substan-
tiation means that the success of the MM schemes in
general must be considered as an experimental fact.
This fact, in turn, requires theoretical explanation that
as any sequential description of molecular structure
and properties must be based on quantum mechanics
(QM). The question of the interrelations between the
MM and QM approaches is well known in the litera-
ture (see, for example, Ref. [3]). It is, however, notCorrespondence to: A. M. Tokmachev; e-mail: tokm@chat.ru
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only of academic interest. Additional attention to the
foundations of the MM schemes is caused by increas-
ing interest to the hybrid QM/MM schemes [4],
where a chemically active part of the whole system is
described by precise quantum chemical methods
while the rest (more or less inert environment) is
represented by an appropriate MM method. The hy-
brid QM/MM schemes use a combination of some-
times high-quality QM and an empirical MM proce-
dure. The status of the combined approach thus
remains unclear, as is the form of the junction be-
tween the quantum and classic subsystems in the
hybrid QM/MM schemes, which is commonly cho-
sen ad hoc because the relations between the QM and
MM approaches are not clearly defined. To derive
successively the explicit form of the junction it is
necessary to assume also that of the wave function
underlying the MM description. In this context the
concept of the MM must be clarified. The common
feature of all MM schemes is that the contributions to
the energy from the bonded and nonbonded atoms
are treated differently, that is, the bonding is some-
what externally assumed. Different MM schemes em-
ploy different specific forms of potentials and numer-
ous systems of their parameters fitted to reproduce a
variety of characteristics [5–8] for a more or less wide
class of molecules. Also during the evolution of the
MM approach itself some increasingly sophisticated
contributions are added to the original simple picture
that allow to extend the MM approach to increasingly
complex and not transparently tractable classes of the
molecules where the metal-containing complexes and
other molecules with significant electron redistribu-
tion must be mentioned [9–11]. For the latter cases the
modern MM schemes do not represent the energy as
an explicit function of the geometry parameters but
include some kind of optimization scheme (for exam-
ple, in Ref. [11] the scheme adjusting the charges on
atoms on the ground of some simple criterion is em-
ployed). We see that the definition of MM becomes
even more diffuse. Summarizing, we can define the
MM scheme as one representing the energy as a com-
bination of bonding and nonbonding contributions
that are either explicit functions of molecular geome-
try structure or can be obtained from the latter by
simple noniterative optimization procedure. In this
article we suggest a derivation and numerical test of a
scheme of this type—a local parametric expression for
the total energy of organic molecules on the basis of a
quantum description that uses a special form of the
trial wave function of electrons, namely that of the
antisymmetrized product of strictly local geminals
(APSLG).

The reason to choose the APSLG form of the
underlying wave function is some intimate similar-
ity in the energy expressions of the APSLG and MM
schemes. In our previous works [12, 13] we derived
the required form of the junction between the QM
and MM subsystems in an assumption that the inert
part of the combined system can be represented by
the wave function in the APSLG form [14–16]. At
the same time, the APSLG-based QM method is a
complicated, self-consistent iteration procedure
with numerous diagonalizations of effective Ham-
iltonian matrices although of small dimensionality.
Nevertheless, the APSLG approach seems appro-
priate for obtaining the MM-type schemes for dif-
ferent reasons: The APSLG approach provides the
local description of the molecular electronic struc-
ture; it represents the energy as the sum of in-
trabond and interbond contributions and thus can
be considered as a natural starting point for con-
struction of different additive schemes. Because the
MM scheme is itself a parametric empirical proce-
dure, it is unnecessary to use a sophisticated non-
empirical description for deriving the latter. It is
more logical to use a semiempirical method as a
starting point. A semiempirical implementation of
the APSLG trial wave function has been recently
developed with use of the MINDO/3 form of the
Hamiltonian and resulted in an O(N)-scaling
method suitable for describing organic molecules.
This method and its parameterization are described
in details in Refs. [16–18].

The article is organized as follows. In Section 2
we first briefly summarize the main features of the
APSLG approach. Next, the one-step procedures
for optimization of geminal amplitudes and hybrid-
ization matrices are discussed. In Section 3, we
propose a series of approaches for evaluation of the
electronic energy of molecules in the APSLG ap-
proximation and evaluate their accuracy. Next, we
discuss the possibility of treating these approaches
as generic MM-type descriptions. Section 4 contains
the summary of results.

2. Construction of Generic MM
Schemes

2.1. WAVE FUNCTION AND ENERGY OF
UNDERLYING APSLG-BASED QM METHOD

The APSLG wave function of electrons in the
molecule has the form
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��� � �
m

gm
��0� (1)

and is an example of the general “group function
method” [19] wave function. Each geminal corre-
sponds to a chemical bond or a lone electron pair. In
the case of a chemical bond, the geminal (singlet
two-electron function) is constructed of two orbitals
�r� and �l� assigned to the right and left ends of the
bond, respectively. In the second quantization for-
malism it can be written as

gm
� � umrm�

� rm�
� � vmlm�

� lm�
� � wm�rm�

� lm�
� � lm�

� rm�
� �.

(2)

The first two terms are ionic configurations (two
electrons on the right or left end of the bond, re-
spectively), while the last term is the covalent
(Heitler–London) configuration. The normalization
condition for the geminal Eq. (2) reads

um
2 � vm

2 � 2wm
2 � 1. (3)

In the case of a lone pair only the first (ionic) term
makes sense and the geminal can be written as

gm
� � rm�

� rm�
� . (4)

The orbitals �r� and �l� are chosen as strictly local-
ized hybrid orbitals (HOs) [20], that is, they are
obtained by applying 4 � 4 orthogonal hybridiza-
tion matrices hA � SO (4) to the set of atomic
orbitals (AOs) attached to each heavy (nonhydro-
gen) atom A. The amplitudes of the configurations
(um, vm, wm) for each bond and the matrices hA for
each heavy atom are to be determined [16–18] with
use of the variational principle.

The above function is applied to find an estimate
for the system energy with the Hamiltonian of the
MINDO/3 approximation. In the HO basis the lat-
ter can be rewritten as a sum of one- and two-center
contributions:

H � �
A

HA �
1
2 �

A�B

HAB, (5)

where

HA � �
tm�A

�

�Um
t � �

B�A

�ABZB�tm�
� tm�

� �
tm1,t �m2�A

m1	m2

�
�

�tm1t �m2

AA �tm1�
� t�m2� � h.c.�

�
1
2 �

tm1,t �m2�A
t 
m3,t�m4�A

�
��

� t t�
m1 m2

� t
 t�
m3 m4

�A

tm1�
� tm3�


� t�m4�t�m2�

(6)

and

HAB � � �
tm1�A
t �m2�B

�tm1t �m2

AB �
�

�tm1�
� t�m2��h.c.�

��AB �
tm1�A
t �m2�B

�
��

tm1�
� tm2�

�� t�m2�tm1�, (7)

where h.c. stands for the hermitean conjugation and
t refers to the r or l HO. Molecular integrals entering
this Hamiltonian depend on molecular geometry
and on the hybridization matrices hA. The parame-
ter describing attraction of electrons to a core reads

Um
t � �

i�A

�hmi
A �2Ui� A�. (8)

The electron attraction to other cores and repulsion
of electrons on the orbitals of different atoms �AB

are invariant under the basis transformations al-
lowed. The one-center, two-electron matrix ele-
ments of the Coulomb repulsion are

�tm1t�m2�t 
m3t�m4�
A � �

i�A

hm1i
A hm2i

A hm3i
A hm4i

A �ii�ii�A

� �
i	j�A

�ii�jj�A�hm1i
A hm2i

A hm3j
A hm4j

A

� hm1j
A hm2j

A hm3i
A hm4i

A � � �
i	j�A

�ij�ij�A

	 �hm1i
A hm2j

A hm3i
A hm4j

A

� hm1i
A hm2j

A hm3j
A hm4i

A � hm1j
A hm2i

A hm3i
A hm4j

A

� hm1j
A hm2i

A hm3j
A hm4i

A �, (9)

where i and j are the AOs. The resonance integral
describing one-electron transfers between the HO
tm1

(centered on the atom A) and the HO t�m2
(cen-

tered on the atom B) is expressed through the res-
onance integrals in the AO basis:
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�tm1t�m2

AB � �
i�A

�
j�B

hm1i
A hm2j

B �ij
AB. (10)

The electronic energy is then the sum of four terms:

Eel � E1 � ECoul
�1� � Eres � ECoul

�2� , (11)

originating from (1) the electron–cores attraction
(E1), (2) one-center electron–electron repulsion
(ECoul

(1) ), (3) resonance intrabond interaction (Eres),
and (4) two-center electron–electron repulsion
(ECoul

(2) ). These contributions to the energy have the
form

E1 � 2 �
A

�
tm�A

�Um
t � �

B�A

�ABZB�Pm
tt,

ECoul
�1� � �

A

�
tm�A

�tmtm�tmtm�A
m
tt

� 2�
A

�
tm1,t �m2�A

m1	m2

�2�tm1tm1�t�m2t�m2�
A

� �tm1t�m2�t�m2tm1�
A�Pm1

tt Pm2
t�t�,

Eres � �4�
m

�rmlm
RmLmPm

rl,

ECoul
�2� � 4 �

A	B

�AB �
tm1�A
t �m2�B
m1�m2

Pm1
tt Pm2

t�t� � �
m

�RmLm
m
rl,

(12)

where we use the notation Rm for the right- and Lm

for the left-end atoms, respectively, of the mth bond
and introduce the intrabond matrix elements of
one- and two-electron density matrices:

Pm
tt� � �0�gmtm�

� t�m�gm
��0�,

Pm
rr � um

2 � wm
2 , Pm

ll � vm
2 � wm

2 ,

Pm
rl � Pm

lr � �um � vm�wm,


m
tt� � �0�gmtm�

� tm�
�� t�m�tm�gm

��0�,


m
rr � um

2 , 
m
ll � vm

2 , 
m
rl � 
m

lr � wm
2 . (13)

The nuclear–nuclear (core–core) repulsion in the
MINDO/3 approximation differs from the pure
Coulomb repulsion. It has the form

Enn �
1
2 �

���

C��, (14)

where � and � are the indices of the respective
nuclei and the quantities C�� are defined by the
expression

C�� � Z�Z����� � D��� (15)

with

D��

���

3 0, when R�� 3 �,

D�� 3 �, when R�� 3 0. (16)

The standard MM potentials [7, 11] usually implic-
itly include the Coulomb interaction of some
charges residing on the atoms. The Mulliken atomic
charges in the framework of the APSLG approxi-
mation are simply given by

QA � 2 �
tm�A

Pm
tt � ZA. (17)

The total energy can be written as a sum of contri-
butions with obvious classification:

E � �
m

Em � �
A

�
k	m�A

Ekm
A � Enonbond � ECoul. (18)

This expression contains the intrabond contribu-
tions Em, the contributions from the interaction be-
tween the vicinal chemical bonds at one atom A
(Ekm

A ), the core interaction between nonbonded at-
oms, and the Coulomb interaction of atomic
charges. Eq. (18) thus resembles the MM-type form
of the potential energy. The explicit form of the
contributions is the following:

Em � �
t��r,l�

�2Um
t Pm

tt � �tmtm�tmtm�Tm
m
tt�

� 2�RmLm�
m
rl � 2Pm

rrPm
ll � � 4�rmlm

RmLmPm
rl;

Ekm
A � 
ATk
TkT�m�4�tktk�t�mt�m�Tk

� 2�tkt�m�tkt�m�Tk]Pk
ttPm

t�t�;

Enonbond �
1
2 �

���

Z�Z�D��;

TOKMACHEV AND TCHOUGRÉEFF
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ECoul �
1
2 �

���

Q�Q����. (19)

At the same time this resemblance is relative be-
cause the contributions of Eq. (19) to Eq. (18) are not
explicit functions on geometry parameters but de-
pend on the bond geminal amplitudes um, vm, wm

through the matrix elements of the density matrices
and on matrices hA through the molecular integrals.
In the framework of the APSLG approach [16],
these quantities are determined by iterative optimi-
zation procedure with alternating diagonalizations
and multidimensional direct minimizations. At the
same time, our previous calculations [16] have
shown the bond amplitudes to be close for the
identical bonds in the similar environment. The
hybridization is also close for the atoms of definite
type in the definite environment (e.g., carbon atoms
in ethane, butane, and isobutane molecules have
similar parameters of hybridization). The quantities
um, vm, and wm and hA determined variationally
completely characterize the molecular electronic
structure in the APSLG approximation. These
quantities can be termed as electronic structure pa-
rameters (ESPs). An approximate transferability of
these quantities can be confirmed by numerical es-
timates performed in the present and in our previ-
ous studies on the semiempirical version of the
APSLG approximation. This allows to construct
parametric expressions for the energy. Two classes
of approaches can be constructed. In the first, the
zero approximation transferable ESPs can be taken
and inserted into Eq. (19). In the second class of
approaches, the zero approximation ESPs are tuned
by some one-step (noniterative) procedure to ac-
commodate the variations of the ESPs under geom-
etry variations. In the next section we consider
some procedures to be used for noniterative ESP
tuning.

2.2. NONITERATIVE TUNING OF ESPS

2.2.1. Bond (Geminal) Amplitudes

The optimal values of um, vm, and zm are the
solutions of the eigenvalue problem:

�Am 0 Dm

0 Bm Dm

Dm Dm Cm

��um

vm

zm

� � Em�um

vm

zm

� , (20)

where wm is replaced by zm � �2wm, which sim-
plifies the normalization condition for the geminals:

um
2 � vm

2 � zm
2 � 1, (21)

corresponding to the lowest eigenvalue. The 3 � 3
matrix here is that of the effective two-electron
Hamiltonian for the mth bond. The quantities Am,
Bm, Cm, and Dm are

Am � 2�Um
r � �

B�Rm

�RmBZB� � �rmrm�rmrm�Rm

� �
tm1�Rm
m1�m

�4�rmrm�tm1tm1�
Rm

� 2�rmtm1�rmtm1�
Rm]Pm1

tt

� 4 �
B�Rm

�RmB �
tm1�B
m1�m

Pm1
tt ;

Bm � 2�Um
l � �

B�Lm

�LmBZB� � �lmlm�lmlm�Lm

� �
tm1�Lm
m1�m

�4�lmlm�tm1tm1�
Lm

� 2�lmtm1�lmtm1�
Lm]Pm1

tt

� 4 �
B�Lm

�LmB �
tm1�B
m1�m

Pm1
tt ;

Cm �
1
2 � Am � Bm� � �RmLm

�
1
2 �

tm�rmlrm

�tmtm�tmtm�Tm;

Dm � ��2 �rmlm
RmLm. (22)

As mentioned above, the geminal amplitudes are
remarkably transferable in a series of similar com-
pounds. The quality of this approximation can be
further improved by adjusting the zero approxima-
tion values of the geminal amplitudes. To do so one
can notice that all the matrix elements Eq. (22) of the
effective Hamiltonian Eq. (20) depend only on the
diagonal elements of the one-electron density ma-
trix Pm1

rr and Pm1

ll . Keeping in mind the normalization
condition for the diagonal one-electron densities:

Pm
rr � Pm

ll � 1, (23)

we (following Ref. [21]) introduce for each single
chemical bond the polarity parameter

qm � Pm
rr � Pm

ll � um
2 � vm

2 . (24)
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Then, the diagonal densities can be expressed
through these parameters:

Pm
rr �

1 � qm

2 , Pm
ll �

1 � qm

2 . (25)

The calculation of Am, Bm, and Cm for the mth gemi-
nal requires the information on polarities of all
other bonds (geminals). These polarities are defined
by the transferable values of the zero approxima-
tion amplitudes um, vm, and wm for all the chemical
bonds. Also, intuitively transparent values of the
effective atomic charges can be conveniently used.
They also can be expressed through the bond po-
larities (see above):

QA � �
tm�A

�1 � �
tr � 
tl�qm� � ZA. (26)

Using this notation Am and Bm can be rewritten:

Am � 2Um
r � �rmrm�rmrm�Rm � 2 �

B�Rm

�RmBQB

� 2�RmLm � �
tm1�Rm
m1�m

�2�rmrm�tm1tm1�
Rm

� �rmtm1�rmtm1�
Rm]�1 � �
tr � 
tl�qm1�;

Bm � 2Um
l � �lmlm�lmlm�Lm � 2 �

B�Lm

�LmBQB

� 2�RmLm � �
tm1�Lm
m1�m

�2�lmlm�tm1tm1�
Lm

� �lmtm1�lmtm1�
Lm]�1 � �
tr � 
tl�qm1�. (27)

Analytic formulae for the roots of the correspond-
ing cubic equation are used in calculation. The low-
est of the three roots Em must be taken. Then, the
amplitudes of the geminal are given by the formu-
lae

um � zm

Dm

Am � Em
,

vm � zm

Dm

Bm � Em
,

zm �
1

�1 � � Dm

Am � Em
� 2

� � Dm

Bm � Em
� 2 . (28)

These expressions represent explicit formulae for
the amplitudes um, vm, and wm.

2.2.2. Hybridization Matrices

According to Ref. [22] each hybridization matrix
can be represented by the product of six Jacobi
rotation matrices acting in the 2-D subspaces of the
whole 4-D space. Therefore, it depends on six an-
gles �sx

A , �sy
A , �sz

A , �xy
A , �xz

A , and �yz
A . These six angles,

however, play different roles: The first triple deter-
mines the hybridization itself and must be at least
approximately transferable while three others ro-
tate the set of the HOs attached to the atom A as a
whole and cannot possess any transferability. It is
congenial to the modern MM schemes to consider
the six angles determining hybridization matrices
as quantities that are determined by minimizing a
simple functional:

EA � �
tm�A

�2Um
t Pm

tt � �tmtm�tmtm�A
m
tt � 4�rmlm

RmLmPm
rl�

� 2 �
tm1,t�m2�A
m1	m2

�2�tm1tm1�t�m2t�m2�
A

� �tm1t�m2�t�m2tm1�
A�Pm1

tt Pm2
t�t�, (29)

which is a sum of the intraatomic energy and res-
onance energy of bonds incident to the atom A. This
approach is implemented in this article. In the next
section we consider a series of approximate
schemes based on the energy expression Eq. (19)
but employing different approximate procedures
for the ESPs (geminal amplitudes and hybridization
matrices).

2.3. PARAMETRIC FORMS FOR THE
ENERGY

The important feature of the APSLG-MINDO/3
method [16] is a remarkable transferability of its
relevant ESPs—the geminal amplitudes and hy-
bridization angles. It distinguishes the APSLG
method from others (based, e.g., on the SCF ap-
proximation where the corresponding ESPs—MO
LCAO coefficients—are not transferable). The
geminal amplitudes vary slightly when going from
one molecule to another: For example, the quanti-
ties um, vm, and wm for the COH bond in methane
are 0.4897, 0.4178, and 0.5412, respectively, while in
ethane the analogous quantities are 0.4805, 0.4272,
and 0.5416. These amplitudes also remain approx-

TOKMACHEV AND TCHOUGRÉEFF
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imately the same in the case of the COH bonds in
significantly different environments (e.g., in meth-
ylamin molecule these amplitudes are 0.4814,
0.4223, and 0.5431). That degree of transferability is
even more accurate than one could guess.

At this point we are in a position to formulate a
generic MM scheme with certain QM foundation.
Indeed, if we assume the expression Eq. (19) for the
energy to be an exact QM one, then schemes fitting
into a diffuse concept of MM can be suggested. The
key point with them is to accept specific procedures
for defining the ESPs entering Eq. (19).

Within such a setting the parameters of the
method can be subdivided in two groups: The first
comprises the parameters of the Hamiltonian of the
underlying semiempirical QM approach (in our
case those of the APSLG–MINDO/3 [16]). They do
not require special adjusting; other parameters re-
flect the transferability of the electronic structure
characteristics obtained by the APSLG approach
and can be taken from calculations of simple mol-
ecules by the APSLG approach or specially ad-
justed.

Using such definition of the HO matrices we can
define zero-order approximation to the energy Eq.
(19) by the following procedure: The amplitudes
um, vm, wm are chosen to be constant for each type of
the bond and the angles �sx

A , �sy
A , �sz

A , determining
the hybridization, are also constant for each type of
the atom (the type of atom can be determined in the
way analogous to that of MM: It depends on the
closest environment). In other words, the values of
the hybridization angles define the type of atom in
terms of its hybridization. The quantities �xy

A , �xz
A ,

�yz
A are chosen on the basis of purely geometric

correspondence between directions of HOs and
those of the chemical bonds. The above assumption
of perfect transferability of ESPs um, vm, wm and �sx

A ,
�sy

A , �sz
A allows to represent the total energy as an

explicit function of geometric structure. At the same
time, this approximation may turn out to be crude
because the transferability of the zero approxima-
tion ESPs is good only for similar geometric struc-
ture and the large distortions of the molecule can
impair the quality of this simple model. In fact, the
transferability is characteristic only for the inter-
atomic separations close to the equilibrium bond
lengths. If the bond becomes elongated, the ionic
contributions diminish while the amplitude (wm) of
the homeopolar configuration tends to 1/�2. In
this case, the transferability of the zero approxima-
tion amplitudes is broken and they must be read-
justed. Analogously, if the valence angles are far

from the equilibrium ones the degree of transfer-
ability of the hybridization angles is questionable as
well. Incidentally, the quality of the approximation
to the amplitudes um, vm, wm can be significantly
improved without loss of the explicit character of
the energy expression.

The general idea of constructing local parametric
expressions based on the APSLG description of the
molecular electronic structure can be verified by
numerical estimates of the validity of different
schemes for obtaining the ESPs. The results of pre-
vious sections allow to propose a range of schemes
for estimating the total energy by Eq. (19) differing
by approximations used for obtaining the ESPs:

1. The geminal amplitudes and hybridization
angles � are taken as perfectly transferable
parameters and are not additionally tuned.
This scheme can be termed as FAFO (fixed
amplitudes and fixed orbitals).

2. The geminal amplitudes are additionally ad-
justed by using formulae Eq. (28) while the
HOs remain fixed at their transferable val-
ues—the TAFO scheme (tuned amplitudes
and fixed orbitals).

3. Only the HOs are adjusted by minimizing the
functionals Eq. (29) for each heavy atom but
the geminal amplitudes are taken equal to
their transferable values—the FATO scheme.

4. The geminal amplitudes are adjusted first and
the HOs are corrected for the adjusted values
of the bond amplitudes—the TATO scheme.

5. This is analogous to the previous scheme but
the order of two adjustment procedures is
changed—the TOTA scheme.

3. Results and Discussion

In this article, we performed test calculations on
some organic molecules with use of the above five
schemes. As the first test, we applied the above
schemes to constructing the energy profile for the
process of variation of one of the COH bond’s
length in the methane molecule. The transferable
hybridization matrix is taken to correspond to the
sp3 hybridization and the zero approximation COH
bond amplitudes are taken from a calculation on
the methane molecule at its experimental equilib-
rium geometry. When such a choice is made, all five
schemes give in the equilibrium point the electronic
structure (and other properties, e.g., heat of forma-
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tion) coinciding with those obtained by the original
APSLG approach. Figure 1 represents the differ-
ences between heats of formation calculated by
each of the five above MM-type schemes and by the
APSLG method as a function of the COH bond
length. This figure shows that all the five schemes
work well in the vicinity of the equilibrium geom-
etry. It can be concluded that both the minimum
position and the heat of formation in the minimum
remain the same as in the original QM APSLG
approach [16]. Because the APSLG approach repro-
duces the experimental equilibrium geometry of
methane with perfect accuracy, the MM-type
schemes do the same as well. At the same time, the
results of the zero-order approximation (FAFO) de-

viate from the precise APSLG one strongly for in-
teratomic distances far from the equilibrium. This
level of approximation can, however, satisfactorily
cover the PES within a �0.1 Å range near the equi-
librium position. It is important to find the quanti-
tative measure of deviation between PES calculated
by different computational methods. In our case,
the difference between an MM-type PES and the
APSLG PES must be characterized. As a convenient
and representative measure in the 1-D case, we
choose the area (integral) between two energy pro-
files in the definite interval of variation of the geo-
metric parameter. Table I contains such data for
three different ranges of variation of the COH bond
length in methane for all five schemes. The methods
TAFO and FATO somewhat improve the results of
the FAFO scheme but the range of their validity is
not strongly extended as compared to that of the
FAFO scheme. The methods combining the optimi-
zation of HOs with adjustment of the geminal am-
plitudes work satisfactorily for all interatomic dis-
tances studied. At the same time, the TOTA method
yields the numerical values closer to those obtained
by the underlying APSLG approach than the TATO
scheme. The maximal deviation of the TOTA
scheme from the exact APSLG one does not exceed
0.2 kcal/mol in the whole considered range of ge-
ometry parameters.

The above example is not representative enough
because in the methane molecule the sp3 hybridiza-
tion can be a good approximation even for large
geometry distortions. The hybridization can be sig-
nificantly perturbed when a less symmetrical mol-
ecule is considered. To show how these schemes

FIGURE 1. Relative heats of formation calculated by
all parametric schemes for methane with one COH
bond elongated.

TABLE I ______________________________________________________________________________________________
Areas between energy profiles (kcal/mol Å or kcal/mol deg).

Variation range for a geometry parameter
(Å or deg) FAFO TAFO FATO TATO TOTA

Change of one COH bond length in methane
0.994–1.194 0.031 0.021 0.013 0.004 0.0006
0.794–1.594 2.119 1.241 1.075 0.246 0.038
0.794–3.094 73.973 17.618 56.527 2.121 0.207

Change of one OOH bond length in water
0.880–1.060 3.131 2.676 0.047 0.405 0.037
0.800–1.200 7.904 6.732 0.229 1.112 0.113

Change of two OOH bond lengths in water
0.880–1.060 3.039 2.835 0.028 0.409 0.006
0.800–1.200 9.325 7.978 0.273 1.230 0.014

Change of angle HOOOH in water
101.0–108.0 115.23 98.48 0.32 13.67 0.30
97.0–112.0 246.64 211.00 0.81 29.29 0.66
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work under larger deviation of the hybridization
from the one calculated by the APSLG at the equi-
librium geometry, we consider as the next example
distortions of the water molecule taken with the sp3

hybridization for the oxygen atom as the zero ap-
proximation. The amplitudes um, vm, and wm of the
OOH bond were taken from the APSLG–
MINDO/3 calculation of the water molecule:
0.5946, 0.3317, and 0.5179, respectively. The distor-
tions considered were (1) the variation of the length
of one OOH bond, (2) simultaneous variation of the
lengths of both OOH bonds, (3) variation of the
valence angle HOOOH (these three cover all the
possible distortions of the water molecule). Figures
2–4 represent for these processes the deviations of
the heats of formation calculated by MM-type

schemes and the underlying QM APSLG method
for these processes. Analogously, Table I contains
the integral characteristics of these deviations.

These data show the importance of the quality of
the zero approximation hybridization employed.
The FAFO and TAFO methods result in large devi-
ations of the heats of formation from the APSLG
method even in the case of geometries close to the
equilibrium. Also in the cases of variation of the
lengths of OOH bonds the minimum position is
significantly displaced, and in the case of the vari-
ation of the valence angle the shift of the minimum
position is large. Better results are obtained with
use of the FATO scheme. This scheme in this case
works even better than the TATO scheme. At the
same time the best of these schemes is the TOTA
scheme. It gives results that are in perfect agree-
ment with those of the underlying QM APSLG
approach itself. The data of Figures 1–4 and Table I
unambiguously demonstrate that only the TOTA
scheme can be successfully and surely applied for
description of the large portions of molecular PESs.
Only this scheme is applied in our further analysis.

The molecules considered previously have only
one type of bonds. Now we consider how the
TOTA scheme works with different types of bonds
present. Table II shows the results of calculations on
the heats of formation for the ethane molecule as a
function of the COC interatomic separation. The
zero approximation amplitudes um, vm, and wm for
the COH bond were taken from the APSLG calcu-
lation on the methane molecule in its equilibrium
geometry and the analogous quantities for the
COC bond were taken from the calculation on the

FIGURE 2. Relative heats of formation calculated by
all parametric schemes for water with one OOH bond
elongated.

FIGURE 3. Relative heats of formation calculated by
all parametric schemes for water with both OOH bonds
elongated.

FIGURE 4. Relative heats of formation calculated by
all parametric schemes for water with angle HOOOH
distorted.
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ethane molecule (0.4502, 0.4502, and 0.5453). The
data in Table II show that the ethane molecule is
well described by the TOTA scheme for all inter-
atomic distances considered. Moreover, also for the
large COC distances the difference between the
APSLG and TOTA heats of formation becomes
small. The position of the minimum on the PES
remains unchanged.

Table III contains the results of calculations on a
series of organic molecules (for their experimental
geometry parameters) by the QM APSLG–
MINDO/3 method and the TOTA scheme for the
two sets of zero approximation ESPs (geminal am-

plitudes). The first type of ESP contains no adjusted
parameters. The geminal amplitudes for the COH,
COC, OOH, and COO bonds are taken from the
APSLG calculations on the methane, ethane, water,
and methanol molecules at their experimental ge-
ometry parameters. The sp3 hybridization was
taken as a zero approximation one for all heavy
atoms. These results show that the TOTA scheme
provides the heats of formation well corresponding
to those of the APSLG approach. The deviation
from the underlying APSLG scheme is significantly
smaller than the precision of this scheme itself. It
allows one to make a conclusion of a validity of the
MM-type TOTA scheme for calculations of the
heats of formation and equilibrium geometry struc-
tures of organic compounds with well-defined
chemical bonds and lone pairs. It can be noted that
this parameterization takes zero approximation
ESPs from calculations of the simplest representa-
tives of organic molecules. At the same time, these
ESPs are somewhat different from those character-
istic for larger molecules because the simplest mol-
ecules have somewhat specific structure in the class
of homologues. Therefore, it can be reasonable to
improve the results on the heats of formation by
slight change of the parameters and, thus, the sec-
ond procedure is an attempt to improve the results
of calculations by changing the initial amplitudes
for the COH bond. They were taken as follows:
0.4739, 0.4306, and 0.5431. The change of the param-
eterization allows to improve the agreement be-
tween the heats of formation calculated by the
APSLG and TOTA schemes. At the same time, this
improvement is not significant and the initial gemi-
nal amplitudes can be left unadjusted.

TABLE II ______________________________________
Heats of formation of ethane for different values of
the COC bond length calculated by the APSLG and
TOTA methods (kcal/mol).

r(COC), Å APSLG TOTA �

1.370 �8.456 �8.158 0.298
1.420 �15.585 �15.383 0.202
1.450 �17.902 �17.037 0.865
1.470 �18.739 �18.044 0.695
1.490 �19.065 �18.519 0.546
1.510 �18.923 �18.508 0.415
1.520 �18.689 �18.333 0.356
1.530 �18.354 �18.051 0.303
1.536 �18.106 �17.833 0.273
1.540 �17.922 �17.668 0.254
1.550 �17.397 �17.188 0.209
1.560 �16.785 �16.615 0.170
1.580 �15.312 �15.209 0.103
1.600 �13.538 �13.484 0.054
1.620 �11.493 �11.471 0.022
1.650 �7.977 �7.973 0.004
1.700 �1.138 �1.087 0.051

TABLE III _____________________________________________________________________________________________
Heats of formation of molecules calculated by the APSLG and TOTA methods with two sets of initial
amplitudes for the COH bond (kcal/mol).

Molecule APSLG TOTA(1) �(1) TOTA(2) �(2)

CH4 �8.414 �8.414 0.000 �8.397 0.017
H2O �55.648 �55.605 0.043 �55.605 0.043
C2H6 �18.106 �17.833 0.273 �17.844 0.262
C3H8 �23.438 �22.805 0.633 �22.869 0.569
C4H10 �26.951 �26.200 0.751 �26.295 0.656
C5H12 �32.093 �31.157 0.936 �31.283 0.855
Cyclopropane 18.520 18.877 0.357 18.806 0.286
CH3OH �47.677 �47.014 0.653 �47.001 0.666
C2H5OH �59.112 �57.905 1.207 �57.997 1.115
C3H7OH �63.811 �62.386 1.425 �62.520 1.291
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4. Conclusion

The present work is aimed at constructing para-
metric expressions for the energy of molecules by
starting from an underlying QM description of mo-
lecular electronic structure. Such a construct could
serve as a generic form of MM. The APSLG trial
wave function was proven to be the proper choice
for underlying the desirable MM description. In
such a way, a range of different MM-type schemes
has been constructed for description of the total
molecular energy as a function of molecular geom-
etry. These generic MM schemes can be character-
ized as the QM APSLG–MINDO/3 method [16]
accompanied by special procedures of selection of
the relevant electronic structure parameters—gemi-
nal amplitudes and hybridization angles. Within
such a setting, the parameters of generic MM
schemes are (1) those of the underlying QM Ham-
iltonian and (2) the ESPs. The latter are calculated
by the APSLG–MINDO/3 method for some simple
molecules and are used further according to a pro-
cedure adopted. The deformations of methane and
water molecules have been used to discriminate the
quality of different schemes for selecting the ESPs.
The TOTA scheme results in a reliable agreement
with the underlying QM APSLG method. The per-
formed calculations on the organic molecules of
different classes confirm this conclusion. An at-
tempt to change the initial electronic structure pa-
rameters leads to slight improvement of the results.
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