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Abstract

Analysis of electronic structure of organic molecules performed on the basis of the APSLG trial electronic wave function

with use of the biquaternion parameterization of the SO(4) hybridization manifold of nonhydrogen atoms provided a logical

framework for deductive transition from quantum mechanical (QM) description of molecular electronic structure to molecular

mechanical (MM) description of molecular potential energy surface. This derivation resulted in an alternative form of MM in

which atoms are not considered as interacting point masses (‘balls’), but manifest more complex structure reflecting their

valence state. The latter may be correlated with the atom ‘types’ introduced in standard MM on the basis of analysis of failed

attempts to reproduce certain sets of experimental data in the respective model frameworks.

q 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

A problem of constructing a transition route from

quantum mechanical (QM) description of molecular

electronic structure to molecular mechanical (MM)

[1,2] description of potential energy surface (PES) is

well known. Only on this route one may expect to

find a solution for the long lasting problems like

sequential derivation of QM/MM junctions. Recently

we performed some preparatory work for that. It

consisted (i) in constructing an appropriate under-

lying QM description of molecular electronic struc-

ture to start the derivation from [3–5], (ii) in

establishing (a degree of) transferability of relevant

electronic structure parameters (ESPs) [6,7], and (iii)

in constructing an adequate mathematical description

of hybridization [7]. It turned out that the ESPs like

one- and two-electron density matrix elements in the

basis of the strictly localized hybrid orbitals (HOs)

ascribed to each bond or lone pair are fairly

transferable (see Ref. [6] and below). This allowed

to derive the transferable energy contributions

required for the MM additive form of the total

energy (the force fields) in terms of these quantities.

This all may serve as a starting point in sequential

construction of theoretically substantiated additive

systematics in a spirit of Ref. [8].

It is interestingly enough that such a realm not

related directly to the additivity concept as

stereochemistry can be also considered within the

same setting. Stereochemistry can be regarded as
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a qualitative tool to rationale the shapes the atoms

and groups form when attached to some other

atom. For a century, two fundamental facts shaped

this area: the tetrahedral carbon introduced by van

t’Hoff and Le Bel [9,10] and the pyramidal

nitrogen. Despite that long development history

no common viewpoint upon the source of the

energy dependence on valence angles has not been

developed within the stereochemistry itself. By

contrast, even very simple quantum chemical

methods reproduce the observed geometry features.

In quite general terms it is known that the form of

the coordination polyhedron is ultimately controlled

by relation between the bonding (two-center)

interactions which favor population of excited and

ionized states of an atom under consideration and

the excitation energies of this atom itself, which

tend to keep it in its ground (nonhybridized) state

[11]. (Recently these notions again have been

brought to discussion in Ref. [12]). However, no

sequential derivation has been proposed to bridge

two banks of the river: general theoretical under-

standing on one hand and specific force fields of

MM or empirical rules in stereochemistry.

In fact the Nyholm – Gillespie explanatory

scheme [13–15] well established in stereochemistry

proposes a point of view alternative to that by

Coulson [11]. According to the former the angular

dependence of energy is a result of (Coulomb)

repulsion between electron pairs residing in the

valence shell (valence shell electron pair repul-

sion—VSEPR). In the literature there exist quite a

number of attempts to reconcile the qualitative and

intellectually very attractive picture by Nyholm and

Gillespie with the results of the quantum chemical

calculations, which are reviewed in Ref. [8]. These

attempts, turned out to be discouraging, however. It

has been found that the intraatomic energy terms

responsible for the molecular shape cannot be

identified with the interpair Coulomb interactions.

This finding applies both to the carbon and to the

nitrogen stereochemistry. Neither of them is based

(according to Ref. [8]) upon interpair Coulomb

repulsion. On the other hand one cannot ignore the

enormous heuristical strength of the Nyholm–

Gillespie concept and also the fact that some

correlation (but not equivalence) between the pair

interaction energies and the forms of coordination

polyhedra nevertheless do exist [16]. In any case

the quantum chemical calculations do not provide

any explanation why molecules have that or another

stereochemistry: they simply fix the same fact by

means of yet another—now numerical—experiment.

It the present paper we propose a derivation of a

mechanistic model of molecular PES departing

from certain underlying QM description of mol-

ecular electronic structure. A general sketch of the

derivation is the following. First we describe briefly

the semiempirical APSLG-MINDO/3 method being

a QM basis for this undetaking [17]. Particular

attention will be paid to analysis of the SO(4)

manifold—the mathematical tool to describe

hybridization—and employing this tool to derive a

mechanistic picture of atoms in molecules, which is

an alternative to that used in the standard MM

schemes, and ultimately leads to an alternative

form of MM itself. Next we describe approximate

procedures for estimating the ESPs of the under-

lying QM method (APSLG-MINDO/3). Finally we

describe several forms of the alternative MM

originating from different recipies of fixing the

ESPs.

2. QM method underlying MM description

The basic idea underlying the whole derivation

undertaken in the present paper is that the experimental

fact that the MM description of molecular PES is that

successful as it is reported in the literature must have

certain theoretical explanation [18]. The only way to

get such an explanation is to start a derivation from

certain form of the trial wave function of electrons in a

molecule which belongs to a rather wide class. Any

QM method employing the trial wave function of the

self-consistent field (SCF or Hartree–Fock) approxi-

mation hardly can be used to perform such a derivation

since it results in inherently delocalized description of

the molecular electronic structure. Subsequent a

posteriori localization procedures prescribed in the

literature as a remedy allowing to obtain localized one-

electron states to be used as building blocks of a

localized description in fact create more problems than

provide solutions. First, the localization procedures are

numerous and the fact that they give close (but any way
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not identical) results simply makes the choice of a

unique one more difficult since there is no clear

selection criterion. Second, the local representation of

the Slater determinant does not provide real local

description since the electron number fluctuations [19]

after the localization remain the same as they were

before since the transition from the canonical MOs to

the localized ones does not change the many-electron

state represented by this determinant. Third, irrespec-

tive to the localization procedure used the a posteriori

localized one-electron states always have some

residual amplitudes on other atoms of the molecules

known as ‘tails’. The subsequent ‘tail cutting’ can be

hardly formalized nor reconciled with the general

requirement for transferability of the one-electron

states. All these obstacles made us to undertake a

search for an alternative to the existing QM methods to

be used as a starting point for deriving a mechanistic

description. The requirements for such method had

been formulated in Ref. [18]. According to the latter

the key feature of the underlying QM method must be

that it (i) describes electronic structure in terms

relevant for the MM picture, i.e. in those of bonds

and lone pairs; (ii) the variational character of the

method is desirable; (iii) semi-empirical implemen-

tation of the method.

A method satisfying the formulated criteria has

been designed recently [3]. It uses the geminal form of

the electronic wave function [20] and strictly local HOs

[21] as one-electron basis set to construct it. It was

checked numerically that the bond and lone pair

geminals (see below) are fairly transferable from one

molecule to another and that the electronic energy may

naturally be rewritten in this approximation with use of

really local quantities—such that their local nature is

established by the variational procedure for the total

energy. In next several subsections we describe basic

features of the method.

2.1. Trial wave function underlying

the MM description

The wave function of electrons in the molecule is

taken in Ref. [3] as the antisymmetrized product of the

geminals:

lFl ¼
Y

m

gþ
m l0l: ð1Þ

The specific form of the geminals used in Eq. (1) goes

back to Weinbaum [22]. With use of the second

quantization notation they are written as:

gþ
m ¼ umrþmarþmb þ vmlþmalþmb þ wmðr

þ
malþmb þ lþmarþmbÞ;

ð2Þ

for (two-center) chemical bonds and:

gþ
m ¼ rþmarþmb; ð3Þ

for lone pairs. The amplitudes of the configurations

(um; vm; and wm) in Eq. (2) are determined with use of

the variational principle. The normalization condition

is imposed on the amplitudes:

u2
m þ v2

m þ 2w2
m ¼ 1: ð4Þ

This results in a series of diagonalizations of 3 £ 3

matrices of effective Hamiltonians formed separ-

ately for each two-center bond but weakly depen-

dent on each other. It the present setting three

states of the geminal are allowed for each bond,

and one used in the expansion Eq. (1) corresponds

to the lowest eigenvalue of the effective bond

Hamiltonian.

2.2. Semiempirical QM energy expression underlying

the MM description

Treating the molecular Hamiltonian of the

MINDO/3 form [23] with the APSLG trial wave

function Eqs. (1) and (2) in Ref. [3] resulted in a

semiempirical APSLG-MINDO/3 QM method. In it

the total energy acquires a form close to the MM

potential energy function [2,8]:

Etotal ¼
X
A

EA þ
X
A,B

EAB;

where

EA ¼
X

m[A

X
t[{r;l}>A

½2Ut
mPtt

m þ ðtmtmltmtmÞ
TkG tt

m�

8<
:

þ
X
k,m

X
tt0[{r;l}>A

2g
Tk

tkt0m
Ptt

k Pt0t0

m

9=
;: ð5Þ
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Ebond
RmLm

¼ 2gRmLm
½G rl

m 2 2Prr
m Pll

m�2 4b
RmLm

rmlm
Prl

m;

Enonbond
AB ¼

1

2
ðZAZBDAB þQAQBgABÞ;

in that sense that the bonded and nonbonded atoms are

treated differently. In the above expression Ut
m is the

HO core attraction; ðtmtmltmtmÞ is the intra-HO

Coulomb interaction; g
Tk

tkt0m
is the inter-HO Coulomb

interaction; gAB is the two-center Coulomb interaction

parameter; b
RmLm

rmlm
is the resonance (one-electron

hopping) integral for the rm- and lm-th HOs ascribed

to the m-th bond; Rm and Lm refer, respectively, to the

right- and left-end atoms of this bond; DAB is the

MINDO/3 core-core repulsion function for cores A

and B describing its deviation from the simple

Coulomb repulsion.

This expression is written in terms of the intrabond

matrix elements of one- and two-electron densities:

Ptt0

m ¼ k0lgmtþmst0msgþ
m l0l;

G tt0

m ¼ k0lgmtþmbt0þmat0matmbgþ
m l0l;

Prr
m ¼ u2

m þ w2
m; Pll

m ¼ v2
m þ w2

m;

Prl
m ¼ Plr

m ¼ ðum þ vmÞwm;

G rr
m ¼ u2

m; G ll
m ¼ v2

m; G rl
m ¼ G lr

m ¼ w2
m;

ð6Þ

where t and t0ð¼ ^1Þ correspond to r or l; respect-

ively. They comprise the subset of the QM ESP’s

related to geminal amplitudes. The effective atomic

charges can be also represented through the diagonal

ESP’s:

QA ¼ 2
X

tm[A

Ptt
m 2 ZA; ð7Þ

where ZA stand for the core charges.

2.3. Invariance of the ESP’s related to geminal

amplitudes

The energy expression Eq. (5) is written in terms

of the one- and two-electron density matrix elements

Eq. (6) expressed through the amplitudes of the

geminals Eq. (1). In the APSLG-MINDO/3 framework

it implies constructing effective 3 £ 3 Hamiltonians

for each of the geminals with subsequent diagonaliza-

tion in search for the amplitudes. However, the required

ESPs can be directly expressed in terms of the matrix

elements of the effective Hamiltonians and even more,

their dependence on the matrix elements is in certain

sense weak thus allowing to fix the required ESPs at

reasonable transferable values. Indeed, there exist two

parameters characterizing two aspects of any two-

center bond: the correlation parameter zm and the

polarity parameter mm; respectively.

zm ¼ 4b
RmLm

rmlm
=Dgm;

mm ¼
eL

m 2 eR
m

DgmGðzmÞ
; ð8Þ

GðzmÞ ¼

ffiffiffiffiffiffiffiffiffi
1 þ z2

m

q
:

where eL
m and eR

m are the diagonal matrix element of the

effective Hamiltonian for the m-th (bond) geminal [7],

corresponding to the ionic states with two electrons

residing on the left- and right-end HOs, respectively;

and

Dgm ¼
1

2

X
t[{r;l}

ðtmtmltmtmÞ
Tm 2 gRmLm

: ð9Þ

The QM parameters characteristic for the real bonds

correspond to the limit zm !1: In this limit we obtain

the transferable values of the geminal related ESPs:

G tt0

0m ¼
1

4
; Ptt0

0m ¼
1

2
: ð10Þ

which depend neither on molecular geometry nor on the

nature noronhybridization of the atoms bonded. For the

lone pair geminals these quantities are chosen corre-

spondingly ðGrr
0m ¼ Prr

0m ¼ 1Þ and all other are vanish-

ing. The bond- and atom-specific corrections [7]:

G tt0

m ¼
1

4
þ dGtt0

m ; Ptt0

m ¼
1

2
þ dPtt

m;

dP tt
m ¼

tmmm

2
; dPrl

m ¼ 2
m2

m

4
2

1

4z2
m

; ð11Þ

dG tt
m ¼

tmmm

2
2

1

4zm

; dGrl
m ¼ 2

m2
m

2
þ

1

4zm

:

areof the first andsecondorder inz21
m andmm:However,

the ESP Prl
m which is the spin bond order [3] of the m-th

bond is affected by the small bond- and atom-specific

parameters z21
m and mm only in the second order.
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The bond polarity parameter mm affects remarkably (in

the first order) only the diagonal density matrix

elements; the off-diagonal ones acquire the corrections

of the second order in mm: Taking into account the

corrections to the geminal related ESPs of different

orders results in a hierarchy of approximate mechan-

istic procedures to treat the molecular energy (see

below).

2.4. One-electron states underlying

the MM description

The expression for the energy Eq. (5) is written in

the one-electron basis of HOs given by the formula

(see Ref. [3] and reference therein):

tms ¼
X

i¼s;p[A

ht
miðAÞais; t ¼ r; l; ð12Þ

for each ‘heavy’ (nonhydrogen) atom. The hðAÞ

matrices are SO(4) matrices due to obvious

orthonormality conditions. They produce another

subset of the ESPs of the APSLG-MINDO/3

method, which can be characterized as a hybridiz-

ation related ones. Within the APSLG-MINDO/3

method the matrices hA transforming the AO basis

to the HO one are determined variationally. They

affect the energy through the molecular integrals in

the HO’s basis. The molecular integrals Ut
m;

ðtmtmltmtmÞ
A; and gA

tkt0m
depend on hybridization

only; gRmLm
—on geometry only; and bAB

tmt0m
depend

on the both.

In order to evaluate the hybridization dependence of

the energy it is necessary to have a handy description of

the whole hybridization manifold. The SO(4) group

(i.e. the group of 4 £ 4 orthonormal matrices with unit

determinant) is a so-called ‘dynamical’ group produ-

cing the whole possible variety of hybridizations at

each heavy atom [24] while acting on the AOs set

residing on the latter. The matrix generating the HO’s

is a matrix product:

hðAÞ ¼ hð ~vAÞ ¼ Rð ~vA
l ÞHð ~vA

b Þ; ð13Þ

where the matrix multipliers responsible for the

orientation ðRÞ of the whole set of the HOs at a given

atom and for the hybridization ðHÞ; i.e. for the relative

weights of the s- and p-orbitals in the HOs are

themselves the products of the corresponding Jacobi

matrices:

Rð ~vlÞ ¼ JyzðvyzÞJxzðvxzÞJxyðvxyÞ;

Hð ~vbÞ ¼ JszðvszÞJsyðvsyÞJsxðvsxÞ; ð14Þ

~vl ¼ ðvyz;vxz;vxyÞ;

~vb ¼ ðvsz;vsy;vsxÞ:

The SO(4) group is thus a six-parametric group with a

coordinates vmn:

The set of six infinitesimal operators of the SO(4)

group defined according to:

Bg ¼
›Hð ~vbÞ

›vsg

�����
~vb¼0

and eagbLg ¼
›Rð ~vlÞ

›vab

�����
~vl¼0

; ð15Þ

where eabg is the complete antisymmetric (Levi-

Cività) tensor, has inconvenient commutation proper-

ties. The subset of infinitesimal operators Lg obeys the

usual commutation relations for the angular momen-

tum components. However, the set of pseudomomen-

tum components Bg (in fact these infinitesimal

operators differ from the true momentum operators

by themultiplier i) is not close with respect to

commutation relations and does not commute with

the angular momentum components [24]:

½La;Lb� ¼ eabgLg; ½Ba;Bb� ¼ eabgLg;

½Ba;Lb� ¼ ½La;Bb� ¼ eabgBg:

ð16Þ

This suggests that the map Eq. (14) is not a very good

one, since it masks the fundamental fact that the SO(4)

group is a direct product of two SO(3) subgroups

(SO(4) ¼ SO(3) £ SO(3)). The latter is recovered by

a coordinate transform:

vg^ ¼ eabgvab^vsg; ð17Þ

giving a new set of infinitesimal operators:

Fg ¼
1

2
ðLgþBgÞ; Gg ¼

1

2
ðLg2BgÞ: ð18Þ

Their commutation relations perfectly reflect the

direct product structure of the SO(4) group, since as
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one can check:

½Fa;Gb� ¼ 0; ½Fa;Fb� ¼ eabgFg;

½Ga;Gb� ¼ eabgGg; ;a;b;g;

ð19Þ

so that the vector operator ~F commutes with the ~G and

each of them forms a basis in the tangent space to the

corresponding SO(3) subgroup of the SO(4) group of

interest. The new set of parameters (angles ~v^),

however, lacks any clear physical meaning since they

represent neither pure rotation nor pure deformation of

the system of HOs. These conceptually important

transformationscanberecoveredeitherbysetting ~vþ ¼

~v2; which results in a pure rotation, or ~vþ ¼2 ~v2;

which corresponds to a pure deformation.

The mapping given just above is a significant

improvement as compared to Eq. (14). Never-

theless, it is still a clumsy combination of

trigonometrical functions of two triples of para-

meterizing angles ~v^: So, as in the case of the

SO(3) group [24] a quaternion [25] parameteriza-

tion may be useful also for the SO(4) group. The

preference of such a parameterization is that, for

example, matrix elements of any SO(3) rotation

matrix when expressed in terms of the correspond-

ing normalized quaternion are quadratic functions

of the quaternion components obeying one normal-

ization condition.

A similar parameterization for the SO(4) group is

constructed as follows. First we notice that the

(para)rotations by the triples of angles ~v^ can be

represented as (para)rotations by angles

v^ ¼

ffiffiffiffiffiffiffiffiffiffiX
g

v2
^g

s
; ð20Þ

around axes with the directing cosines v^g=v^;

respectively. The normalized quaternions q and p

corresponding to these pararotations have the follow-

ing components:

q0 ¼ cos
vþ

2
; q1 ¼

vþx

vþ

sin
vþ

2
; q2

¼
vþy

vþ

sin
vþ

2
; q3 ¼

vþz

vþ

þ sin
vþ

2
; ð21Þ

p0 ¼ cos
v2

2
; p1 ¼

v2x

v2

sin
v2

2
;

p2 ¼
v2y

v2

sin
v2

2
; p3 ¼

v2z

v2

sin
v2

2
:

With use of these quaternions one can easily recover

two SU(2) matrices acting each in a separate spinor

space [26,27]. The corresponding SU(2) matrix

defined by the quaternion q ¼ qð ~vþÞ is:

q0 2 iq3 2iq1 2 q2

2iq1 þ q2 q0 þ iq3

 !
j þ 1

2
i

j2 1
2
i

 !
; ð22Þ

and analogous one for the quaternion p ¼ pð ~v2Þ: Now

the problem reduces to that of constructing of an SO(4)

matrix in terms of two SU(2) matrices parameterized by

q and p: Each of the SU(2) matrices acts in a separate

space of two-component spinors [26,27] which corre-

sponds to the two-dimensional representation of the

SU(2) group (or of that of the SO(3) group locally

isomorphous to SU(2)) with the rank 1=2: The latter is

the configuration space of a particle with spin 1/2 (like

an electron). Since the SO(4) group is a direct product of

two SO(3) (SU(2)) groups the space in which it acts is a

direct product of two spinor spaces. Then following the

analogy with the theory of electron spin coupling we

consider a pair of spins. The configuration space for this

pair is spanned by four product functions:

^
1

2
;^

1

2

����
�
; ð23Þ

(all four possible combinations of plus and minus

signs are used). The matrix acting in this space is a

direct (Kronecker) product of the SU(2) matrices

representing the q- and p -pararotations with that

notion that the q-dependent matrix Eq. (22) acts on

the first spinor and the p-dependent one on the

second spinor in the product state. Then we form

linear combinations of the above states which

correspond to specific values of the total momentum

and desired spatial symmetry. Namely, the combi-

nation which corresponds to the zero total momen-

tum transforms as a scalar, i.e. (singlet) s-function.

Those which correspond to the total momentum

equal to unity form the basis in the three-dimen-

sional (triplet) space of p-functions. The coordinate

ðx-; y-; and z-Þ functions are obtained by the
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following transforms:

lsl ¼
1ffiffi
2

p j þ 1
2
;2 1

2
i2 j2 1

2
;þ 1

2
i

� �
;

lxl ¼
iffiffi
2

p j þ 1
2
;þ 1

2
i2 j2 1

2
;2 1

2
i

� �
;

lyl ¼
1ffiffi
2

p j þ 1
2
;þ 1

2
i þ j2 1

2
;2 1

2
i

� �
;

lzl ¼ 2
iffiffi
2

p j þ 1
2
;2 1

2
i þ j2 1

2
;þ 1

2
i

� �
:

ð24Þ

The Kronecker product matrix in this basis gives an

SO(4) matrix:

This comprises the parameterization of the SO(4)

group by a pair of normalized quaternions.

Further we shall need also the small variations

of the system of HOs residing at a given atom.

Due to the algebraic group structure of the HOs

manifold any small variation of HOs in a vicinity

of any given set of HOs h can be obtained

with use of the SO(4) matrix H close to the unity

matrix I :

H ¼ I þ dð1ÞH þ dð2ÞH;

h0 ¼ Hh < h þ dð1Þh þ dð2Þh; ð26Þ

dð1Þh ¼ dð1ÞHh; dð2Þh ¼ dð2ÞHh;

where thegeneral formofmatrix isgivenbysinglingout

the contributions Eq. (25) up to the second order with

respect to the (small) components of the vector parts of

the quaternions q and p [7].

2.5. Quaternion form of the hybrids and hybridization

tetrahedron

In Section 2.4 we used quaternions to construct the

parameterization of the (SO(4) group) hybridization

manifold. However, the strictly local HOs allow for

the quaternion representation for themselves. Indeed,

the quaternion may be characterized as an entity

comprising a scalar and a 3-vector part: q ¼ ðs; ~vÞ:

The coefficient of the s-orbital does not change under

the spatial rotation of the molecule, whereas the

coefficients at the p-functions transform as if they

were the components of the three-dimensional vector.

Thus each of the HOs located at a heavy atom can be

presented as a quaternion:

qm ¼ ðsm; ~vmÞ; s2
m þ l~vml

2
¼ 1: ð27Þ

For an arbitrary HO in the quaternion representation

the first order correction obtained under variations d ~vl

and d ~vb of the triples of the Jacobi angles acquire a

particularly simple form:

dð1Þs ¼ 2ðd ~vb; ~vÞ;

dð1Þ~v ¼ sd ~vb þ d ~vl £ ~v: ð28Þ

The HOs and thus the quaternions representing the

latter are subject to the normalization condition. This

allows to construct a visual picture of hybridization by

using four vector parts ~vm at a given atom. The formal

operation is the the projection by:

I 2 lslksl; ð29Þ

which cuts out the scalar part of each HO ðsm; ~vmÞ in

the quaternion representation. It can be easily

recovered from the normalization condition. The

rest forms a hybridization tetrahedron. Directions of

the vectors forming the latter coincide with those of

the HOs themselves, the angles between the vectors

coincide with the interhybrid angles, the lengths of the

vectors are square roots of the weights of the p-states.

These vectors can be assumed to have a common

origin coincident with the position of the atom.

Despite they seem to be very flexible objects (the

lengths of the vectors, intervector angles are likely to be

variable) the hybridization tetrahedra are in fact subject

to very strict conditions due to the orthonormality of

h ¼

q0p0 þ q1p1 þ q2p2 þ q3p3 q0p1 2 q1p0 2 q2p3 þ q3p2

2q0p1 þ q1p0 2 q2p3 þ q3p2 q0p0 þ q1p1 2 q2p2 2 q3p3

2q0p2 þ q1p3 þ q2p0 2 q3p1 q0p3 þ q1p2 þ q2p1 þ q3p0

2q0p3 2 q1p2 þ q2p1 þ q3p0 2q0p2 þ q1p3 2 q2p0 þ q3p1

q0p2 þ q1p3 2 q2p0 2 q3p1 q0p3 2 q1p2 þ q2p1 2 q3p0

2q0p3 þ q1p2 þ q2p1 2 q3p0 q0p2 þ q1p3 þ q2p0 þ q3p1

q0p0 2 q1p1 þ q2p2 2 q3p3 2q0p1 2 q1p0 þ q2p3 þ q3p2

q0p1 þ q1p0 þ q2p3 þ q3p2 q0p0 2 q1p1 2 q2p2 þ q3p3

0
BBBBBB@

1
CCCCCCA:

ð25Þ
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the HOs at a given atom. Only a three-dimensional

manifold of the possible forms of the hybridization

tetrahedra spanned by the triple ~vA
b of the Jacobi angles

is available. This considerably reduces the freedom in

allowed shapes of the hybridization tetrahedra. As one

can easily check the standard sp3-hybridization is

naturally represented by a perfect tetrahedron

withl~vml ¼
ffiffi
3

p
=2; the sp2-hybridization is represented

by a trigonal pyramid with one of the vectors (aligned to

its height) having a unit length, and three others

representing the sp2-hybrids laying in the plane with

l~vml ¼
ffiffiffiffi
2=3

p
; finally, the nonhybridized atom is rep-

resented by a tetrahedron formed by three perpendicu-

lar unit vectors while the fourth one representing the

pure s HO is a zero vector. Three Jacobi angles defining

the forms of hybridization tetrahedra cover all the

intermediate situations. In fact this parameterization

may serve as a basis of establishing correspondence

between different MM atom types and different

hybridization states controlled (flexibly enough) by

the ~vA
b triples and represented by hybridization

tetrahedra of different shape (see below).

3. Constructing alternative forms

of molecular mechanics

The representation of the molecular electronic

energy in the APSLG approximation present above

allows for a mechanistic representation which can be

in some sense considered as a ‘generic’ or ‘deductive’

form of MM. Although the simplistic ‘balls-and-

springs’ model hardly can be justified from a general

point of view, it does not mean that some other

mechanistic model can not be justified either. More

sophisticated approaches which are constructed with

an additional (artificial) condition that the interactions

between the ‘atoms’ are required to have ‘classical’

form [28] also seem to be too much restrictive: the

classic (in fact—electrostatic) form of the interatomic

interaction cannot be substantiated in the ultimately

quantum realm of molecular electronic structure.

The related history dates back to the beginning of

the last century. As Prof. Kozelka cites in his excellent

review Ref. [29] as early as in the year 1901 certain

company advertised a model set of wooden (i.e. rigid)

tetrahedra which were designed to represent the forms

(spatial arrangement) of atoms in organic molecules.

An MM description (if someone had had pursued this

direction) could then naturally arise in terms of

parameters of such tetrahedra, rather than balls’ sizes

and the springs’ elasticities known now. Such a

description in principle should not be worse than a

conventional ‘balls-and-springs’ MM at least for that

reason that atoms with bonds are to the same extent

similar to balls with springs (or sticks) as they are to

the wooden tetrahedra. The model QM expression for

molecular energy Eq. (5) allows, however, to

substantiate namely the ‘tetrahedral’ form of the

MM. Indeed, a mathematical object called the

‘hybridization tetrahedron’ introduced above to visu-

alize the shape of the HO system residing at a given

atom can be modeled by some tetrahedral shapes

assigned to ‘heavy’ atoms. Of course, tetrahedral

shapes have been previously used in the literature to

visualize atoms. It is enough to mention the textbook

[30]. However, as far as we know, nobody tried to

proceed further and to ascribe any definite energy

significance to the form and relative orientation of

these tetrahedra, though the qualitative considerations

due to Pauling himself, leading to the maximal hybrid

strength or the maximal overlap [31] principles, are

well known. We are going, however, to deduce a

mechanistic model for molecular energy from the QM

method described above. It will be seen that perform-

ing necessary moves, following the line mentioned in

the Introduction results naturally in such a tetrahedral

representation of heavy atoms which is consistent with

facts known from stetreochemistry.

The derivation reduces to the following: certain

classes of the ESPs introduced in Section 2 are fixed

according to some rules. The idea to fix at least a part

of the ESPs immediately rises a question at what

values they must be fixed and what governs the choice.

In the semiempirical APSLG-MINDO/3 approach two

classes of the ESP’s appear: the geminal amplitudes

and the HOs related ones, respectively. This is of

course a specific case of the two types of variables

which appear in the MC SCF realm [32] to which the

APSLG-MINDO/3 method belongs by construction.

In the MC SCF two sets of variables are considered—

the configurations’ expansion coefficients which relate

to our geminal amplitudes and the MO expansion

coefficients which correspond to our HOs’ parameters.

The procedures of fixing these ESPs can be classified

according to the specific subset which is kept fixed
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(this respectively results in the FA or the fixed geminal

amplitudes and the FO or the fixed hybrid orbitals

approaches) or is tuned to reproduce the effect of

geometry variations or substitutions (this results in the

TA and TO approaches). In what follows we shall

construct a variety of approximate treatments of the

expression Eq. (5) each leading to a specific mechan-

istic description.

3.1. Fixed amplitudes fixed orbitals (FAFO) model

This is a simplest possible mechanistic model of

the PES following from an approximate treatment of

the energy Eq. (5). The FA type of treatment implies

that the geminal amplitude related ESPs Eq. (6) are

fixed at their invariant values Eq. (10). This

corresponds clearly to a simplified situation where

all bonds are literally the single bonds. Within such a

picture the dependence of the energy on the

interatomic distance reduces to that of the matrix

elements of the underlying QM (MINDO/3) Hamil-

tonian.

The FO type of treatment for the HOs implies that

the weights of the s- and p-components in the HOs at

each heavy atom are fixed. This also means that the

shapes of the hybridization tetrahedra remain fixed.

This can be done by a variety of ways, each

producing a specific implementation of the FAFO

model. The simplest way is to fix them at the

standard spn hybridizations with integer n ¼ 1 4 3:

Alternatively one may produce a series of hybridiz-

ation tetrahedra by fitting the experimental data.

Other methods may also be invented. In any case the

tetrahedral shapes once found are fixed and interact

with each other (and with the ‘spheres’ representing

the hydrogen atoms). The number of bonding

interactions each tetrahedron is allowed to take part

in equals to four minus the number of lone pairs

residing on it, i.e. is determined by the usual valence

rules.

Analysis of the general energy expression Eq. (5)

proves that the only HO orientation dependent

contribution to the energy is the resonance energy

of the two center bonds. It can be recast in the form

of interaction between the hybridization tetrahedra

which in its turn depends on the distance between the

centers of the tetrahedra, on their mutual orientation,

and on their orientation with respect to the straight

line connecting the centers of the tetrahedra involved

(the atoms). The latter can be proven by the

following construction: consider the m-th two-center

bond and the 4 £ 4 matrix of the resonance integrals

between the AOs in the diatomic coordinate frame

(DCF) which is defined by setting its z-axis to

coincide with the unit vector directed along the RmLm

two center bond:

BRmLm ¼

bRmLm
ss 0 0 b

RmLm

sz

0 bRmLm
pp 0 0

0 0 bRmLm
pp 0

b
RmLm

zs 0 0 b
RmLm

zz

0
BBBBBBB@

1
CCCCCCCA
; ð30Þ

Its elements depend on the RmLm-interatomic

separation only. The resonance integral b
RmLm

rmlm
for

the m-th bond (geminal) can be written in a concise

form:

b
RmLm

rmlm
¼ hRm†

m BRmLm hLm
m ;

where the HOs centered on nonhydrogen atoms are

taken in the DCF as well. To get rid of the tight

connection to the DCF we notice that the only

necessary components of the vector parts of the HO

quaternions i.e. their z-components have the CF

invariant representation according to:

v
Tm

mz ¼ ðv2Tm
m ; ~eRmLm

Þ: ð31Þ

With use of the latter the resonance integral can be

rewritten in the form

b
RmLm

rmlm
¼ bRmLm

ss sRm
m sLm

m þ b
RmLm

sz sRm
m ð~vLm

m ; ~eRmLm
Þ

þ b
RmLm

zs ð~vRm
m ; ~eRmLm

ÞsLm
m

þ bRmLm
pp ð~vRm

m ; ~vLm
m Þ þ ðb

RmLm

zz 2 bRmLm
pp Þ

� ð~vRm
m ; ~eRmLm

Þð~vLm
m ; ~eRmLm

Þ; ð32Þ

which is coordinate frame independent. The short-

hand form of the resonance integral is:

b
RmLm

rmlm
¼ ðsRm

m ; ~vRm
m ÞBRmLm

sLm
m

~vLm
m

 !
; ð33Þ
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with the resonance matrix following the quaternion

structure of HOs with the scalar and vector parts:

where I stands for the 3 £ 3 unit matrix acting (as

does the 3 £ 3 diadic product ~eRmLm
^~eRmLm

) on the

vector parts of HOs in the quaternion form.

The hybridization tetrahedra then interact accord-

ing to Eq. (5) and the interaction energy depends on

the mutual orientation of the tetrahedra and on that

with respect to the bond axis. Multiplying the

resonance integral by the quadrupled transferable

spin bond order Prl
0m ¼ 1=2 Eq. (10) results in the

resonance energy which is the only nontrivial

contribution to the molecular energy at this (FAFO)

level of approximation.

3.1.1. Local equilibrium conditions for hybridization

tetrahedra and quasitorques

In the FAFO picture when the form of the

hybridization tetrahedron is fixed the equilibrium

condition for the HOs reduces to that for the

orientation of the latter. Due to angular character of

the variables involved the corresponding set of the

energy derivatives with respect to the ~vA
l components

can be considered as a (quasi)torque (here the prefix

quasi refers to the fact that no rotation of any physical

body is involved in its definition rather that of a

fictitious hybridization tetrahedron). As one can

check, each bond incident to the given atom

contributes to the quasitorque the following:

~KRmLm
m ¼24Prl

0m{½b
RmLm

zs sLm
m þðb

RmLm

zz 2bRmLm
pp Þ

�ð~vLm
m ;~eRmLm

Þ�~eRmLm
£~vRm

m þbRmLm
pp ~vLm

m £~vRm
m }:

ð35Þ

Assuming to simplify the notations that for all the

incident bonds the atom A is the right-end atom ðA¼

RmÞ we obtain the overall quasitorque acting upon the

hybridization tetrahedron centered on the atom A and

the corresponding energy minimum conditions with

respect to orientations of all hybridization tetrahedra

in the molecule:

~KA¼
X
m

~KRmLm
m ;

;A; ~KA¼0:

ð36Þ

Clearly enough, these are the equilibrium conditions

analogous to those which appear in the problem of

equilibrium of a system of rigid bodies [33].

Though the equilibrium conditions Eq. (36)

require that a sum of the contributions Eq. (35)

vanishes, it is of interest to consider archetypical

situations when each of these contributions vanish.

These situations are twofold since two vector terms

in Eq. (35) sum up to give a quasitorque contribution.

The first one, proportional to ~eRmLm
£ ~v

Rm
m ; vanishes if

the HO on the right-end atom and the bond vector are

collinear. If the same holds also for the left-end atom

one can see that the vector parts of both HOs

ascribed to the bond under consideration are collinear

so that the second vector term proportional to ~v
Lm
m £

~v
Rm
m also vanishes. This clearly corresponds to the

equilibrium condition for two singly s-bonded

hybridization tetrahedra. A quasitorque appears if

an HO is not collinear with the bond axis it is

ascribed to and tends to align them.

For a pair of HOs not containing any s-

contribution an alternative equilibrium condition is

possible. For two pure p-orbitals residing on the

right- and left-end atoms of the bond the numerical

coefficients at the first vector terms vanish if the

HOs are perpendicular to the bond axis. In this

case the second vector term vanishes if two vectors

representing the pure p-orbitals are parallel. This

clearly corresponds to the p-bonding between the

hybridization tetrahedra. A quasitorque then

appears tending to orient two hybridization tetra-

hedra in such away that the two heights of unit

length of two tetrahera are parallel.

3.1.2. Global equilibrium conditions for hybridization

tetrahedron

In Section 3.1.1 we formulated the equilibrium

conditions for the hybridization tetrahedra which

follow from the FAFO approximation for the

molecular energy Eq. (5). They do not seem to be

practical for performing calculations since require

tedious recalculations on the scalar and vector parts of

the HOs after a step along the energy gradient Eq. (36)

BRmLm ¼
bRmLm
ss b

RmLm

sz ~eRmLm

b
RmLm

zs ð~eRmLm
Þ† bRmLm

pp Iþ ðb
RmLm

zz 2 bRmLm
pp Þ~eRmLm

^~eRmLm

0
@

1
A; ð34Þ
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is performed. An alternative would be to use the

formulae Eqs. (13) and (14) with fixed pseudorotation

angles ~vA
b which produce the matrix Hð ~vA

b Þ with the

columns corresponding to the system of HOs at a

given atom. If these HOs are treated as quaternions,

their vector parts ~vAð0Þ
m form the hybridization tetra-

hedron at the atom A: The actual orientations of these

tetrahedra are defined by interactions of each

hybridization tetrahedron with their neighbors: either

other tetrahedra or spheres, representing hydrogen

atoms. For each atom the orientation of its system of

HOs is given by a rotation matrix Rð ~vA
l Þ Eqs. (13) and

(14) according to:

sA
m

~vA
m

 !
¼ RA

sA
m

~vAð0Þ
m

 !
: ð37Þ

The rotation matrices RA ¼ Rð ~vA
l Þ have the following

structure:

R ¼

1 0 0 0

0

0 R

0

0
BBBBBB@

1
CCCCCCA; ð38Þ

ensuring the invariance of the scalar parts of the HOs.

The vector parts of all HOs residing at a given atom

transform according to:

~vA
m ¼ RA

~vAð0Þ
m ; ð39Þ

which ultimately gives the actual orientation of the

hybridization tetrahedra in the molecule. The rotation

matrix RA can be written in the form [24,25]:

R¼

r2
0 þr2

1 2r2
2 2r2

3 2ðr1r22r0r3Þ 2ðr1r3þr0r2Þ

2ðr1r2þr0r3Þ r2
0 2r2

1 þr2
2 2r2

3 2ðr2r32r0r1Þ

2ðr1r32r0r2Þ 2ðr2r3þr0r1Þ r2
0 2r2

1 2r2
2 þr2

3

0
BBB@

1
CCCA;

ð40Þ

where r0; r1; r2; and r3 are the components of a

normalized quaternion r defining the required

(quasi)rotation of the hybridization tetrahedron

residing at the atom in question. The resonance

energy thus becomes a quadratic function of the

components of the normalized quaternions rA: The

orientation of these tetrahedra satisfies the energy

minimum condition. Taking derivatives with

respect to the components of rA and including the

normalization conditions k rAk¼1 by using the

Lagrange multipliers jA results in a set of four-

dimensional linear eigenvalue problems:

JArA ¼ jArA
; ð41Þ

which must be solved self-consistently for all

nonhydrogen atoms, since matrices JA depend on

orientation of the hybridization tetrahedra on atoms

bonded to A: The eigenvector rA corresponding to

the lowest eigenvalue jA must be taken throughout

the iteration process.

The matrix elements of JA can be evaluated with

use of two fundamental facts concerning quaternions.

First, the rotation of the vector part of an HO

according to Eqs. (37)–(40) in a quaternion represen-

tation can be written as:

hA
m ¼ rAShAð0Þ

m S~rA
; ð42Þ

where S stands for the quaternion multiplication.

Second, for a pair of quaternions a and b written in the

form Eq. (27):

a ¼ ða0; ~aÞ; b ¼ ðb0;
~bÞ;

but not necessarily normalized, the following holds:

aSb ¼ ða0b0 2 ð~a; ~bÞ; a0
~b þ b0~a þ ~a £ ~bÞ: ð43Þ

Then taking into account that by definition ~a ¼

ða0 ;2~aÞ and performing the necessary algebra we

arrive to a pair of 4 £ 4 matrices

0 1
2
~vRmð0Þ

m £ ~eRmLm

1
2
ð~vRmð0Þ

m £ ~eRmLm
Þ† ð~vRmð0Þ

m ; ~eRmLm
ÞIþ 1

2
ð~vRmð0Þ

m ^~eRmLm
þ ~eRmLm

^~vRmð0Þ
m Þ

0
@

1
A

0 1
2
~vRmð0Þ

m £ ~vLm
m

1
2
ð~vRmð0Þ

m ~vLm
m Þ† ð~vRmð0Þ

m ; ~vLm
m ÞIþ 1

2
ð~vRmð0Þ

m ^~vLm
m þ ~vLm

m ^~vRmð0Þ
m Þ

0
@

1
A;
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which must be respectively multiplied by

ðb
RmLm

zs sLm
m þ ðb

RmLm

zz 2 bRmLm
pp Þð~vLm

m ; ~eRmLm
ÞÞ and bRmLm

pp ;

and then summed and multiplied by the quadrupled

bond orders for all bonds incident to the given atom

which we habitually take to be the right-end one for

them all for the sake of simplicity of notation.

Summing up these contributions for all bonds incident

to the given atom results in the required symmetric

matrix JA
: This comprises the global equilibrium

condition for hybridization tetrahedra in the FAFO

model. Their direct relation with the molecular shape

which enters in an invariant manner through the bond

vectors ~eRmLm
is remarkable enough.

3.1.3. Libration energy of hybridization tetrahedra

In the previous subsections we considered the

equilibrium conditions for the hybridization tetrahe-

dra in molecule, which represent the orientation of the

systems of HOs at each heavy atom with fixed weights

of the s- and p- functions in each HO. In order to have

a description of the energy in the vicinity of the

equilibrium the second order corrections to it are

necessary. The terms of interest are of two types. First,

these are the terms of the second order with respect to

quasirotation angles d ~vA
l at a given atom which

describe the energy variation when the hybridization

tetrahedron of the atom at hand slightly rotates

(librates) while all surrounding hybridization tetra-

hedra for heavy atoms and spheres representing

hydrogens remain in their equilibrium positions.

Second, these are the terms of the overall second

order bilinear with respect to d ~v
Rm

l and d ~v
Lm

l : These

terms describe the correction to the energy which

appears when hybridization tetrahedra residing on two

bonded atoms simultaneously librate.

Due to the FAFO approximations only the

resonance energy is affected by the librations of the

hybridization tetrahedra. The terms of the first type

may be obtained by inserting the second order

correction ðdð2Þs
Rm
m ; dð2Þ~v

Rm
m Þ to the right-end HOs into

the expression for the resonance integral Eq. (33). In

the FO approximation dð2Þs
Rm
m naturally vanishes.

Inserting the second order corrections for the HOs in

Eq. (32) results in the second order correction to the

resonance integrals. The latter must be habitually

multiplied by the quadrupled spin bond orders and

summed. This procedure has been performed in Refs.

[7,17] for the sp3 hybridized atom with four

symmetric substituents. In this case the energy

correction is a diagonal quadratic form in d ~v
Rm

l with

three degenerate eigenvalues:

d
ð2Þ
vlvlE ¼ 4Prl

0G
RmRm

ll ðd ~v
Rm

l Þ2;

GRmRm

ll ¼
4ffiffi
3

p b
RmLm

zs sLm
m 2 b

RmLm

zz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 ðs

Lm
m Þ2

q� �
: ð44Þ

The corrections of the second type can be easily

obtained if one inserts the first order corrections

ðdð1Þs
Rm
m ; dð1Þ~v

Rm
m Þ and ðdð1Þs

Lm
m ; dð1Þ~v

Lm
m Þ to Eq. (33). As

previously dð1Þs
Rm
m ¼ dð1Þs

Lm
m ¼ 0 due to the FO

approximation. After some algebra we get:

d
ð2Þ
vlvlE ¼ 4Prl

0mðd ~v
Rm

l lGRmLm

ll ld ~v
Lm

l Þ;

where

G
RmLm

ll ¼ bRmLm
pp ðð~vRm

m ^~vLm
m Þ2 ð~vRm

m ; ~vLm
m ÞIÞ

þ ðb
RmLm

zz 2 bRmLm
pp Þð~vRm

m £ ~eRmLm
Þ^

ð~vLm
m £ ~eRmLm

Þ: ð45Þ

The terms of this type must be summed over all bonds

between the heavy atoms. The formulae Eqs. (44) and

(45) represent the potential energy of the molecular

system as a quadratic function in small variations of

the variables d ~vA
l : This may be used either in a frame

of linear response analysis of reaction of the system of

hybridization tetrahedra to various perturbations or (if

the tetrahedra are supplied by fictitious inertia

momenta) as potential energy of the system of the

tetrahedra in a frame of the Car-Parinello [35]

procedure. The interaction of the neighbor hybridiz-

ation tetrahedra is particularly simple if the tetrahedra

involved correspond to the sp3 hybridized atom with

equivalent bonds. In this case the HOs are collinear

with the bond vectors so that the formula Eq. (45)

becomes:

G
RmLm

ll ¼
3

4
bRmLm
pp ðð~eRmLm

^~eRmLm
Þ2IÞ:

Numerical estimates for the libration force constant

can be easily done. For the methane molecule only the

term of Eq. (44) appears. With the MINDO/3

parameterization at the equilibrium geometry of

methane it amounts to 17.19 eV/rad2 For neopentane

at the same conditions the diagonal libration force
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constant is 21.15 eV/rad2, whereas the coefficient at

the off-diagonal 3 £ 3 matrix block responsible for

coupling of librations of two neighbor carbon

hybridization tetrahedra is only 2.02 eV/rad2.

3.2. Fixed amplitudes tuned orbitals (FATO) model

The deductive mechanistic model for molecular

PES proposed in Section 3.1 corresponds to the

picture of the rigid (‘wooden’) hybridization tetra-

hedra. Within such a picture whatever perturbations

taking place to a molecule may result in variations of

the orientation of the hybridization tetrahedra repre-

senting the systems of HOs residing at each heavy

atom. Meanwhile, the proposed treatment of the

SO(4) hybridization manifold may be used to

construct another, wider (but also deductive) mechan-

istic representation of molecular energy where heavy

atoms are depicted as flexible (rubber) tetrahedra.

Analysis of results of semiempirical calculations by

the APSLG-MINDO/3 method underlying our deri-

vation, performed in Ref. [6], shows that the

hybridization related ESPs are much more sensitive

to various perturbations affecting the molecule than

the geminal amplitudes related ones. This puts to

agenda developing an approximation which allows

first of all the adjustment of the shape of the HOs at

each heavy atom to various perturbations. The

geminal related ESPs may be still considered to be

fixed at their transferable values.

In the FA approximation the one-center energies

EA Eq. (5) related to the carbon atom remains

hybridization independent (see below and Refs. [7,

17]). This result which ultimately comes from the fact

that in carbon the valence shell (with the principal

quantum number 2) is half filled distinguishes carbon

among other elements. For that reason (in the FA

approximation) only the resonance contribution to the

total energy depends both on orientation (as in the

FAFO model) and on the form of the hybridization

tetrahedra. This considerably simplifies the derivation

in the case of carbon atoms. For that reason we

consider it separately.

3.2.1. FATO molecular mechanics of sp3 carbons

Local equilibrium conditions for sp3 carbons and

pseudotorques. As it is mentioned previously the only

hybridization dependent contribution to the total

energy in the case of carbon atom is the resonance

energy. Thus the equilibrium conditions with respect

to the shape and orientation of the hybridization

tetrahedra representing the system of HOs residing at

a carbon atom A reduce to a requirement of

evanescence of the first derivatives of the resonance

energy with respect to pseudo- and quasirotation

angles Eq. (14). Using the expansion for the resonance

energy up to linear terms [17] in small pseudo- and

quasirotations (d ~vA
b and d ~vA

l ) results in the equili-

brium conditions:

~NA ¼ 7 ~vA
b
E ¼ ~KA ¼ 7 ~vA

l
E ¼ 0; ;A;

where the quasitorque ~KA is defined by Eq. (35),

whereas the pseudotorque ~NA is:

~NA ¼ 24
X

m[A

Prl
0m{bRmLm

ss ~vRm
m sLm

m

þ b
RmLm

sz ~vRm
m ð~vLm

m ; ~eRmLm
Þ2 b

RmLm

zs sRm
m sLm

m ~eRmLm

2 bRmLm
pp sRm

m ~vLm
m 2 ðb

RmLm

zz 2 bRmLm
pp Þ

� sRm
m ð~vLm

m ; ~eRmLm
Þ~eRmLm

}: ð46Þ

As previously we assumed here for the sake of

simplicity of notation that for all bonds incident to the

atom A this atom is a ‘right-end’ atom of the bond.

Though the equilibrium conditions are rather

cumbersome, for symmetric cases they can be

solved leading to obvious answers: the carbon atom

in symmetric tetrahedral environment acquires the

sp3 hybridization with the HOs collinear to the

bonds, etc.

The analog of the global equilibrium conditions

Eq. (41) for the FAFO model can be obtained in

the FATO setting as well. In order to do so we

notice that inserting the SO(4) matrix parameter-

ized by a pair of quaternions Eq. (25) yields the

resonance energy as a function bilinear in each of

the normalized quaternions qA and pA describing

together the shape and orientation of the hybridiz-

ation tetrahedron. Combining this bilinear form

with the normalization conditions for the quater-

nions: kqAk ¼ kpAk ¼ 1 taken into account with use

of the Lagrange multipliers uA and nA results in
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a system of pairs of coupled linear equations:

QAqA ¼ uApA;YApA ¼ nAqA
;

which must be solved consistently for all A: We do

not give the explicit form of matrices QA and YA

here both because they are too cumbersome and

also for the reason that the given treatment of the

global equilibrium can not be generalized to atoms

other than carbon since their one-center energies

involve higher powers of the HO coefficients (see

below).

Second order corrections to energy of sp3 carbon.

In order to construct the required mechanistic picture

the estimate of the restoring force which opposes both

the quasi- and pseudorotation (deformation) of the

hybridization tetrahedra is necessary. That can be

obtained by a linear response procedure. For the sp3

carbon atom in the symmetric tetrahedral environ-

ment the related resonance energy is a diagonal

quadratic form with respect to small quasi- and

pseudorotations together with triply degenerate eigen-

values [7,17]:

dð2ÞvvE ¼ 4Prl
0mðG

RmRm

bb ðdv
Rm

b Þ2 þ GRmRm

ll ðdv
Rm

l Þ2Þ;

where

G
RmRm

bb ¼ 2 bRmLm
ss þ

1ffiffi
3

p b
RmLm

zs

� �
sLm

m

�

2 b
RmLm

sz þ
1ffiffi
3

p b
RmLm

zz

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 ðs

Lm
m Þ2

q �
: ð47Þ

This is used to obtain the response of the shape

and orientation of the hybrids (d ~vb and d ~vl) to

various perturbations (see below). Analogous

expressions can be obtained with use of formula

Eq. (25) for arbitrary hybridization and this will be

done elsewhere [7].

Further terms are necessary to describe the

interaction between the two bonded tetrahedra

which appears when either of them is quasi- or

pseudorotated in the vicinity of the equilibrium.

These formulae can be obtained by considering

those cross terms in the resonance integral expan-

sion which are bilinear in d ~vRm and d ~vLm ;

respectively. This results in the following 6 £ 6

off-diagonal GRmLm blocks

dð2ÞvvE ¼ 4Prl
GRmLm

bb GRmLm

bl

GRmLm

lb GRmLm

ll

0
@

1
A;

where the 3 £ 3 subblocks G
RmLm

bb ; G
RmLm

bl ; G
RmLm

lb are:

G
RmLm

bb ¼ bRmLm
ss ~vRm

m ^~vLm
m 2 b

RmLm

sz sRm
m ~vRm

m ^~eRmLm

2 b
RmLm

zs sRm
m ~eRmLm

^~vLm
m þ bRmLm

pp sRm
m sLm

m I

þ ðb
RmLm

zz 2 bRmLm
pp ÞsRm

m sLm
m ~eRmLm

^~eRmLm
;

G
RmLm

bl ¼ 2b
RmLm

sz ~vRm
m ^ð~vLm

m £ ~eRmLm
Þ2 bRmLm

pp sRm
m VLm

m

þ ðb
RmLm

zz 2 bRmLm
pp ÞsRm

m ~eRmLm
^ð~vLm

m £ ~eRmLm
Þ;

GRmLm

lb ¼ 2b
RmLm

zs ð~vRm
m £ ~eRmLm

Þ^~vLm
m þ bRmLm

pp sLm
m VRm

m

þ ðb
RmLm

zz 2 bRmLm
pp ÞsLm

m ð~vRm
m £ ~eRmLm

Þ^~eRmLm
;

VRm
m stands for the 3 £ 3 matrix representing the

vector multiplication by ~v
Rm
m ; and the GRmLm

ll

subblock is defined by Eq. (45). These subblocks

couple in a bilinear fashion small pseudo- and

quasirotations of the hybridization tetrahedra corre-

sponding to the right- and left-end atoms of the

bond (in the specified order). Their form particu-

larly simplifies for the sp3 carbon atom in a

symmetric environment for which we have:

GRmLm

bb ¼ 1
4
bRmLm
pp I2 1

4
3bRmLm

ss þ
ffiffi
3

p
b

RmLm

sz

h

2
ffiffi
3

p
b

RmLm

zs 2 ðb
RmLm

zz 2bRmLm
pp Þ

i
~eRmLm

^~eRmLm
;

GRmLm

bl ¼ GRmLm

lb ¼ 1
2
bRmLm
pp ERmLm

:

where ERmLm
stands for the 3 £ 3 matrix represent-

ing the vector multiplication by ~eRmLm
:

For the diagonal restoring force constants related to

the deformations of the hybridization tetrahedra the

following estimates can be obtained: 30.58 eV/rad2 in

CH4; 34.49 eV/rad2 in neopentane.

3.2.2. FATO molecular mechanics of nitrogen atom

As it has been shown above within the FA

approximation the form of the HO on four-coordi-

nated carbon atom is ultimately defined by the two-

center resonance interactions. It is the SO(4) group
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structure of the hybrid manifold that restricts the

capacity of the HOs residing on the atom to adjust

themselves to the arrangements of the surrounding

atoms (groups). In this subsection we apply linear

response method to estimate the shape of the

hybridization tetrahedron and to analyze stereochem-

istry and molecular mechanics of nitrogen atom. Even

in the FA picture presence of the lone pairs on the

nitrogen atom results in a significant hybridization

dependence of the one-center energies Eq. (5) which

cannot be considered as a small perturbation. For that

reason we consider the hybridization dependent parts

of molecular energy in order to extract information on

equilibrium shapes of the corresponding hybridization

tetrahedra. For the sake of simplicity we restrict

ourselves with one in the ammonia molecule since this

model problem retains all the characteristic features of

the general case. In order to study it we consider the

C3v ammonia molecule with the third order axis

directed along the z-axis of the coordinate frame. Its

geometry is characterized by the pyramidalization

angle d equal to zero for the planar geometry. For the

symmetry reasons the overall resonance energy of

three N – H bonds is a function of only one

pseudorotation angle vsz and of d :

2
ffiffi
3

p
Prl bRmLm

ss cosvsz þ b
RmLm

zs sin d sinvsz

h

þ
ffiffi
2

p
b

RmLm

zs cos d
i
: ð48Þ

It is easy to see that the minimum of the above

expression with respect to both its arguments is

reached precisely for the planar configuration and the

sp2 hybridization (d ¼ 0; vsz ¼ 0). The hybridization

dependent part of the one-center energy of the

nitrogen atom is:

ðUs 2 UpÞ þ
1
4
ð3C2 þ 2C3 þ 4C5Þ

h i
sin2vsz

þ 1
4

C3 sin4 vsz; ð49Þ

with obvious extrema: a minimum at vsz ¼ p=2 (no

hybridization) and a maximum at vsz ¼ 0 (sp2

hybridization). (The combinations Cn; (n ¼ 1 4 5;

see below) of the Slater–Condon parameters [36]

have been introduced in Refs. [7,17]). Characteristic

values of the atomic parameters [23] show that the

contributions depending on Coulomb integrals can

provide the total variation in energy less than 0.8 eV

whereas the difference of the core attractions results in

a huge amount of about 10 eV. Thus the nontrivial

equilibrium in such a system is only possible if the

strong deforming potential exerted by the first term

and tending to no hybridization is counterpoised by

other contributions. Within the FA approximation the

only counterpoise is the resonance energy. By this we

arrive to a very simple (but internally consistent)

picture for hybridization/stereochemistry of the nitro-

gen atom. Two contributions to the energy exist. One

(Eq. (49)) tends to keep the valence angles at 908,

another one (Eq. (48)) tends to place all substituents at

the nitrogen atom to one plane with the latter. The

observed pyramidal form is a result of the interplay

between these two contributions. This results in a

pyramidalization (inversion) potential in which no

kind of interbond interactions is involved, by the way

(see below).

In the present setting the equilibrium shape of the

nitrogen hybridization tetrahedron is given by

the value of the pseudorotation angle vsz only. In

the vicinity of the equilibrium it is reasonable to

assume that the latter value arises as a result of an

action of a deforming force exerted due to the

resonance interaction with hydrogens on the other-

wise nonhybridized nitrogen atom. The nonplanar

form is maintained by the reaction of the one-center

energy proportional to the second derivative of Eq.

(49) at the nonhybridized minimum. The total

pseudotorque exerted by three symmetrical bonds

equals to the derivative of Eq. (48) with respect to vsz

at the point corresponding to the minimum of Eq.

(49). Finally he correction to the pseudorotation

angle is:

dvsz ¼

ffiffi
3

p
Prl

0b
RmLm
ss

2 ðUs 2 UpÞ þ
1
4
ð3C2 þ 2C3 þ 4C5Þ

h i ;
which defines to a first approximation the shape of the

hybridization tetrahedron of the nitrogen atom. That

raw estimate results in the numerical value of dvsz of

only ca. 0.38 rad. The equilibrium values of this

pseudorotation angle is ca. 0.95 rad. That large

discrepancy is clearly due to the pseudotorque and

thus the tetrahedron shape are determined by the

resonance interactions of the nitrogen’s s-orbital only

and for that reason do not depend on actual
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pyramidalization angle d: The equilibrium pseudor-

otation angle in its turn is esimated at the equilibrium

geometry where additional deforming force is exerted

upon the system of the nitrogen HOs.

The above analysis of molecular energy unequi-

vocally results in certain pyramidalization potential of

rather nontrivial form which is reported elsewhere [7,

17]. Its existence is proven by sequential derivation

from a QM expression for the energy Eq. (5) rather

then decided on a ‘school-wise basis’ [34]. Formally,

the source of this potential is a purely QM require-

ment of mutual orthogonality of HOs centered on an

atom. Its physical nature may be characterized as the

energy of excited configurations of the nitrogen atom

admixed to its ground state by the perturbation

induced by the resonance interaction with surrounding

bonded atoms. The admixture coefficients (weights)

of the excited atomic configurations appear as

functions of hybridization parameters, which can be

even explicitly written according to Ref. [11]. Neither

of these sources has anything to do with interpair

Coulomb interaction.

3.3. Tuned amplitudes fixed orbitals (TAFO) model

Further analysis of different possible approxi-

mation procedures for treating the energy Eq. (5)

would be one which allows to tune the ESPs related to

the geminal amplitudes (TA) but keeps intact the

shapes of hybridization tetrahedra (FO). This results

in a TAFO approach which a priori looks as an

acceptable option for constructing an MM-like

scheme for the molecular PES. However, a simple

analysis of the above expansions allows one to

conclude that in fact the sensitivity of two subsets of

the ESPs characteristic for the underlying APSLG-

MINDO/3 QM method opposes this approximation

scheme. In fact whatever perturbation affects the HO-

related ESPs much stronger than the geminal related

ones. Thus in any case when the geminal amplitudes

are expected to be affected by the environment the

HOs are affected much stronger. The opposite

situation may happen only if some very rare special

perturbation (like completely symmetric deformation

of the carbon tetrahedron) takes place. For that reason

we do not discuss this approximation further in this

paper.

3.4. Tuned amplitudes tuned orbitals (TATO) model

The mechanistic model of the PES closest to the

underlying QM procedure (and eventually coincident

with the latter [6]) is of course that where both classes

of ESP’s are adjusted to each other and to the

geometry variations. Nevertheless, it can be shown

that the corrections to the invariant (transferable

values) of the geminal related ESPs are small, though

not negligible. As for the HO related ESPs they

remain as much sensitive to whatever perturbation as

in the FATO class of approximations.

In the present subsection we consider the effects of

small variations of the geminal related ESPs upon the

shapes of the hybridization tetrahedra. Doing that we

take into account only the corrections to the ESPs of

the first order with respect to z21 and m: In this

assumption the bond orders remain invariant which

considerably simplifies the whole picture.

Since, the bond orders in the TATO model are kept

at their invariant values, the energy modification

occurs due to the one-center terms. The one-center

energy Eq. (5) can be rewritten [7]:

EA ¼ Eð0Þ þ E0 ¼ E1 þ E2 þ E3;

where

Ei ¼ Eð0Þ
i þ E0

i;

and

Eð0Þ
1 ¼

X
tm[A

Ut
m; E0

1 ¼ 2
X

tm[A

Ut
mdPtt

m; ð50Þ

Eð0Þ
2 ¼

1

4

X
tm[A

ðtmtmltmtmÞ
Tm ;

E0
2 ¼

X
tm[A

ðtmtmltmtmÞ
TmdGtt

m;

Eð0Þ
3 ¼

1

4

X
k–m

X
tt0

g
Tk

tkt0m
; E0

3 ¼
X
k–m

X
tt0

g
Tk

tkt0m
ðdPtt

k þdPt0t0

m Þ:

where we dropped the second order term dPtt
kdPt0t0

m

from E0
3:

The following matrix elements are responsible for

the hybridization dependence of the above

expressions:

Ut
m ¼ s2

mðUs 2 UpÞ þ Up; ð51Þ
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ðtmtmltmtmÞ ¼ C1 þ C2s2
m þ C3s4

m;

gtkt0m
¼ C4 þ C5½s

2
m þ s2

k� þ C3s2
ms2

k :

The one-center energy components have no clear

counterpart in the standard MM setting. In our

approach the one-center contributions E0
i which arise

due to deviations of the geminal related ESPs (dPtt
m

and dG tt
m) from their transferable values are hybrid-

ization dependent. The derivatives of E0
i’s with respect

to the angles ~vb; ~vl taken at the values characteristic

for the stable hybridization tetrahedra shapes which

appear in the FATO model yield quasi- and

pseudotorques acting upon the hybridization tetrahe-

dron. In order to evaluate these quantities we notice

first of all that all the dependence on hybridization

resides in the one center terms in that of the matrix

elements Eq. (51). In the latter the only source of the

hybridization dependence is that of the second and

fourth powers of the coefficients of the s-orbital in the

HOs. Since they do not depend on the orientation of

the hybridization tetrahedra we immediately arrive to

a conclusion that no quasitorques appear in the TATO

setting:

~K0
i ¼ 0:

For the pseudotorques we get:

~N0
1 ¼ 24ðUs 2 UpÞ

X
tm[A

dPtt
msm~vm;

~N0
2 ¼ 22

X
tm[A

dG tt
mðC2 þ 2C3s2

mÞsm~vm;

~N0
3 ¼ 22

X
k–m

X
tt0

ðC5ðsm~vm þ sk~vkÞ

þ C3smskðsk~vm þ sm~vkÞÞðdPtt
k þ dPt0t0

m Þ:

This general expression must be evaluated at

characteristic points. If we want to evaluate say effect

of single substitution at the sp3 carbon atom the choice

of symmetric hybrids is appropriate. At this point

we have ;m sm ¼ 1=2; ~vm ¼
ffiffi
3

p
=2~eRmLm

which results

in the following:

~N0
1 ¼ 2

ffiffi
3

p
ðUs 2 UpÞ

X
tm[A

dPtt
m~eRmLm

;

~N0
2 ¼ 2

ffiffi
3

p

2
C2 þ

1

2
C3

� � X
tm[A

dG tt
m~eRmLm

;

~N0
3 ¼ 2

ffiffi
3

p

2
C5 þ

1

4
C3

� � X
k–m

X
tt0

ð~eRmLm
þ ~eRkLk

Þ

� ðdPtt
k þ dPt0t0

m Þ:

The above pseudotorques give in the linear response

approximation the following pseudorotations of the

hybridization tetrahedron on the atom under consider-

ation:

d ~vbi ¼
N 0

i

8Prl
0mG

RmRm

bb

; d ~vb ¼
X

i

d ~vbi: ð52Þ

These quantities ultimately define that which can be

related to the atom types of the standard MM setting.

Indeed, the atom types in the MM differ among other

features by their preferable valence angles. In the

deductive MM setting the counterpart for the

preferred valence angles are the interhybrid angles

or in other words the shapes of the hybridization

tetrahedra. The latter may be characterized by

interhybrid angles umm0 related to the coefficients of

the s-functions in the corresponding HOs at a given

atom:

cos umm0 ¼ 2
smffiffiffiffiffiffiffiffiffi

1 2 s2
m

p sm0ffiffiffiffiffiffiffiffiffi
1 2 s2

m0

q : ð53Þ

Its variation under a small pseudorotation d ~vb is:

dumm0¼2
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

12s2
m2s2

m0

q

� sm0 ðd ~vb;~vmÞ

ffiffiffiffiffiffiffiffi
12s2

m0

12s2
m

s
þsmðd ~vb;~vm0 Þ

ffiffiffiffiffiffiffiffi
12s2

m

12s2
m0

s0
@

1
A:

ð54Þ

For the symmetric sp3 tetrahedron the above

expression simplifies to:

dumm0 ¼2

ffiffiffi
3

8

r
ðd ~vb; ~eRmLm

þ ~eRm0Lm0
Þ:

For the atoms with valence shell having the principal

quantum number 2 the pseudotorque ~N0
1 dominates the

whole picture. Then assuming that only one HO

acquires a density correction dPrr
1 we get as a first
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approximation:

du1m ¼ 2
1

4
ffiffi
2

p
Us 2 Up

GRR
bb

dPrr
1 ;m – 1:

dumm0 ¼ 2du1m ;mm0 – 1:

Since Us 2 Up , 0 the density increase (dPrr
1 . 0) at

the first HO results in an increase of the incident

interhybrid angles and in equal decrease of the angles

between otherwise nonperturbed HOs. This all, of

course, relates to analysis performed in Ref. [34] with

that difference that HOs here are not arbitrarily

assumed to be collinear with the bonds. Numerical

estimates are the following. The calculation on the

CH3F molecule results in the value of dPrr
1 for the C–

F bond geminal of 20.13. With use of the above

estimate of GRR
bb performed for methane we get

du1m < 248 which is in a perfect agreement with

the complete APSLG-MINDO/3 calculation.

This result allows to readdress the Nyholm–

Gillespie [13–15] idea of electron pair Coulomb

repulsion in the valence shell as a source of the

observed stereochemistry. According to these authors

(supported by the calculation Ref. [16]) the interpair

repulsion energies conform to the rule that more

populated bond repels the bonds incident to it

stronger, which in the limit results in a rule that lone

pair repels other bonds and the corresponding valence

angles are smaller than the ideal tetrahedral ones. We

have already shown that this result appears without

any relation to the Coulomb repulsion while analyzing

the source of the pyramidalization potential of

nitrogen. Here as well, we see that an infinitesimal

increase of electron population at one of the HOs

makes others to increase the interhybrid angles with

that, more populated, HO. Though this is in perfect

agreement with the Nyholm–Gillespie rules the real

source of the effective interhybrid interaction has

nothing to do with Coulomb repulsion of electron

pairs.

The above consideration is in agreement also with

the well known qualitative Bent’s rules [37] which

states that the weight of the s-AO increases in the HO

which is involved in bonding with a more electro-

positive substituents. Indeed, electropositive substi-

tuents would lead to the positive values of dPrr
1 and

after using the formulae Eqs. (52) and (28) the

variation for the s-coefficient becomes:

ds1 ¼ 2
3

8

Us 2 Up

GRR
bb

dPrr
1 ;

which is positive for the second row atoms. The latter

formula shows that the Bent’s rule validity crucially

depends on the sign of the Us 2 Up difference. If for

any reasons the opposite sign of the above factor

occurs or the effect of the ~N0
1 pseudotorque is

superceded by that of ~N0
2 (it has an opposite sign

and according to our estimate is much smaller for the

atoms of the first period which is likely to change for

heavier elements) the inversion of the Bent’s rule

takes place, and its modification proposed by Frenk-

ing [40] on the base of analysis of numerical

experiments acquires theoretical explanation.

4. Discussion

In the context of a construct presented in this paper

the relation with previous theories must explain on

one hand the common points and on the other hand the

differences and thus the reasons why previously

developed approaches did not reach certain results

we believe are acquired here. Here we performed a

sequence of moves intended to bridge the gap between

an approximate QM description of molecular elec-

tronic structure and a classical representation of the

PES of organic molecules suitable for further para-

meterization and simplifications in order to reach a

scheme similar to molecular mechanics. This con-

struct may be qualified as a deductive molecular

mechanics since each of its components has a

transparent counterpart in the underlying QM descrip-

tion and the approximations and simplifications used

can be uniquely characterized and formulated. From

our point of view this gives a possible explanation to

the enormous success both of MM in describing with

considerable precision even tiny details of molecular

geometry of organic compounds and of VSEPR in

explaining and predicting characteristic features of

molecular shapes. These two success stories made us

consider them as experimental facts which require

certain theoretical explanation. We felt that a demand

for such an explanation is rather strong since

according to Ref. [38] “the situation is scandalous:
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… the method [MM] used in thousands of laboratories

throughout the world does not have any reliable QM

derivation”. At the same time the kind of explanation

we were looking for fits to a remark by Coulson [39]

that”… any explanation why must be given in terms of

concepts which are regarded as adequate or suitable.

So the explanation must not be that the electronic

computer shows that DðH 2 FÞq DðH 2 HÞ; since

this is not an explanation at all, but merely a

confirmation of experiment” by some other means

and the measure of consistency (or inconsistency)

between results of different types of experiments

(including numerical ones performed on an ab initio

or semiempirical level) is a subject of separate

theoretical consideration. We also feel that a sequen-

tial derivation based on well defined grounds might be

as much useful for verification or falsification of

whatever pragmatic model as accurate numerical

experiments are [40].

Previous attempts to sequentially construct addi-

tive systematics for molecular energies (which a

fortiori include the MM paradigm) reviewed in Ref.

[8] had the following common points: the transfer-

ability hypothesis, one-determinant approximation for

the underlying QM wave function, and a posteriori

localization of the orbitals. These features together

prevented authors of Ref. [8] from constructing a

sequential route from the QM description of the

molecular electronic structure to any additive sys-

tematics. The reason is that the real derivation of any

additive systematics must include both a proof of

transferability and a procedure of defining the relevant

local states (whether transferable or not). Also one has

to admit that it may well happen that ‘a one-span

bridge’ between that much different paradigms as the

QM and MM is not possible and bridging the gap may

require a pier somewhere in between. For these

reasons we have chosen an alternative approach to the

problem technically based on the APSLG form of trial

wave function [5] and the variational principle for

molecular electronic energy. The key feature of the

underlying QM approach is its local character

recovering the common notion of chemical bonds

and lone pairs on the basis of a non-Hartree–Fock

electronic trial wave function treated variationally.

The non single-determinant form of the trial wave

function allowed to obtain a natural representation of

molecular energy in terms of local quantities. Also the

proof of transferability of key quantities entering the

theory strongly relies upon the APSLG form of the

trial wave function. The local character of the one-

electron states is inherent within the approach

suggested and the specific form of the one-electron

states of interest appears as a result of energy

minimization procedure which allowed to avoid

poorly defined ‘tail cutting’. All these features of the

present approach allow as it is shown above to

construct a sequential procedure of deriving a

mechanistic description of molecular PES departing

from a local QM description of molecular electronic

structure.

The mechanistic picture obtained takes an inter-

mediate position between QM methods and standard

MM schemes. Though it can be used as a standalone

mechanistic model of molecular PES the standard MM

picture is still to be derived from it by eliminating the

auxiliary (from this point of view) angular variables for

quasi- and pseudorotation of the hybridization tetra-

hedra. In the present paper we did not address in detail

the dependence of molecular energy on interatomic

separations and the coupling of the bond stretching and

valence angle bending with the variables describing

the shape and orientation of the hybridization tetra-

hedra. It will be published elsewhere [7].

In the present paper we also gave a comparison of

results of our derivations with predictions based on

the VSEPR model of stereochemistry [13–15]. The

latter ascribes a great significance to Coulomb bond–

bond interactions in order to explain the observed

molecular shapes. It has to be noticed that in the

setting present in this paper molecular shapes

themselves do not appear. The conjecture is that

they follow somehow the shapes of the hybridization

tetrahedra but there is shurely some difference due to

other contributions to the energy. In the TATO model

that would be interactions between the effective

atomic charges. However, even in the TATO model

where one could expect nontrivial effect of electron–

electron interactions upon the shape of the hybridiz-

ation tetrahedra only the topology of the hybridization

manifold assures the latter in carbon atoms. The

situation with other organogenic atoms at a first

glance significantly differs from this picture. In the

case of nitrogen and oxygen atoms even in the FA

approximation the one-center energy is strongly

hybridization dependent due to the one-electron
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terms describing the core attraction of electrons in the

lone pair and sensitive to the relative weights of the s-

and p-AOs in the corresponding HO. The source of

this is of course the strong difference between the core

attractions (also Coulomb by nature) in the s- and p-

subshells with large preference towards purely s-lone

pair for atoms with the valence shell with principal

quantum number 2. In free atoms this immediately

resulted in no hybridization at all for nitrogen and

oxygen and in 908 valence angles predicted by older

theories [11] for water and ammonia with subsequent

need to explain the observed form of these molecules

with the valence angles only slightly smaller than the

tetrahedral ones and both exceeding 1008. Curiously

enough, the authors of the VSEPR model seem to

overlook this result well known for years (if not for

decades) and did not consider it as a starting point and

incidentally the limiting case of the electron pair

repulsion and started their theory from a scratch. If we

reside in the FA domain we have to admit that the only

source of the observed stereochemistry can be found

in the interplay between one-center hybridization

dependent terms and the resonance energy. This was

clear yet to Coulson [11], but seems to acquire a

formal proof only here.

5. Conclusion

In the present paper we analyzed the semiempirical

QM method which uses the APSLG form for the

electronic trial wave function and strictly local HOs as

a basis of one-electron states. Two elements of this

analysis are crucial: (i) the variational character of

treating molecular energy, which allowed for the

linear response procedures; (ii) the adequate para-

meterization of the hybridization manifold for non-

hydrogen atoms. This analysis resulted in a family of

mechanistic models for molecular PES. This makes a

step towards a QM substantiation of MM. Several

alternative forms of molecular mechanics appear. The

simplest one based on the fixed amplitudes fixed

orbitals (FAFO) approximation for the APSLG ESPs

results in a picture representing all nonhydrogen

(heavy) atoms as rigid tetrahedra. The molecular

energy then becomes a function of molecular

geometry (internuclear separations), of mutual orien-

tation of these tetrahedra, and of their orientation with

respect to interatomic axes. More elaborated schemes

inherit both the visual representation of heavy atoms

by tetrahedral shapes and the form of the energy as a

function of the distances between the tetrahedra

centers and of their orientations. The FATO class of

approximations leads to a model with flexible

hybridization tetrahedra and allows to pose questions

concerning the equilibrium shapes of these tetrahedra.

Finally, the TATO class of approximations may be

qualified as one closest to the underlying QM method:

it allows for adjustment of both the electron density

matrix elements and the shapes of the hybridization

tetrahedra. At this level of consideration it becomes

possible to analyse in a linear response the effect of

population variations at HOs upon the shapes of

hybridization tetrahedra. It was found that these

effects are in agreement with the empirical rules

known within the VSEPR theory, but the source is

completely different.

When this paper has been already accepted a paper

Ref. [41] came to the author’s view. It deals to a large

extent with the problem of parameterizing the

hybridization manifold of a main group atom with

the sp-valence shell. The coordinate map used in Ref.

[41] differs from both Eqs. (14) and (25), but the

general interrelations within the system of HOs at

a given atom are the same since they are controlled by

the dimensionality of this manifold.
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