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Abstract  Hybrid QM/MM methods are widely used for describing different as-
pects of behavior of complex molecular systems. The key problem
when applying the QM/MM methodology is a substantiated construc-
tion/selection of the junction between the parts of the system described
at the QM and MM levels, respectively. It is especially important in
the case of covalently bound QM and MM subsystems. We pursue
here a general approach based on a sequential separation of electronic
variables in order to develop a fundamental form of the intersubsys-
tem junction. Special attention is given to construction of frontier one-
electron states and renormalization of QM Hamiltonian parameters and
MM force fields. From this point of view we consider a series of the
junction forms present in the literature and in some cases suggest theo-
retically more reliable alternatives. General theoretical conclusions are
supported by data of numerical experiments.

Keywords: QM/MM methods, junction, physical principles, APSLG scheme, effec-
tive Hamiltonian

1. Introduction

Modern computational quantum chemistry tends to cover with ac-
ceptable precision molecular systems of real interest. In the framework
of ab initio methodology achieving a good quality results is usually con-
cerned with extending basis sets of one-electron states and with explicit
taking into account a great deal of electron correlation. It leads to ex-
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tremely high computational costs for medium and large size systems due
to unpleasant scalability of computational resources like N*+ N7 (where
N is the dimension of a space spanned by one-electron basis functions).
Even in the case of semiempirical methods the computational costs grow
as N3 with growth of system size. This is a serious problem for applica-
tion of quantum chemical procedures for calculating properties of many
practically important molecular systems and especially of their chemical
transformations [1]. The problem of high computational costs is espe-
cially actual when large systems of biological importance are considered
or massive calculations of potential energy surfaces (PESs) are necessary,
for example, in the framework of molecular dynamics simulations.

In the literature different means are proposed to significantly reduce
computational costs without deteriorating the quality of obtained re-
sults. The first way is to smooth the dependence of computational costs
on the size of the system. This type approaches usually exploit the
localization of electronic degree of freedom, based on the ”principle of
nearsightedness” [2], or the exponential decay of the one-electron den-
sity matrix elements [3]. The almost linear scalability is not impossible
and, for example, authors of Ref. [4] have shown that the scalability
of the order N3 can be achieved. There is a reasonable number of
successful attempts to achieve optimal N-scalability properties for the
whole spectrum of quantum chemical schemes — ab initio, DFT, and
semiempirical. The non-variational schemes are based on the ”divide-
and-conquer” methodology [5, 6, 7], Fermi operator expansion [8, 9],
energy renormalization group [10] and recursion technique [11]. The
variational approaches [12, 13, 14, 15] are based on the substitution
of energy minimization by the grand canonical potential minimization
[16]. These techniques are thoroughly reviewed in Refs. [17, 18]. At
the same time these methods are mostly oriented on the tight-binding
models of solids or solid clusters. The density matrix renormalization
group method [19] is quite important achievement since it competes in
quality with most elaborated methods of conventional quantum chem-
istry [20]. We should stress that the use of local one-electron basis states
can significantly reduce computational costs [21]. In this context direct
determination of localized Hartree-Fock orbitals can be especially use-
ful and workable [22]. Significant acceleration of computations can be
achieved by using pseudodiagonalization procedures [23] or by special
choice of the trial electronic wave function [24, 25, 26, 27| alternative
to the standard SCF form. The application of the methods with good
scalabilty properties to enzyme reactions, structure and properties of
proteins and DNA is straightforward [28, 29].
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The molecular mechanics (MM) [30] is another good candidate for
using in calculations of properties of large molecular systems. Currently
it is extensively used in the field of biochemical simulations. At the
same time there are significant limitations for its use. Generally, they
are consequences of classical nature of the MM force fields [31]. For ex-
ample, the application of MM schemes to chemical reactions including
the processes of bond formation or cleaveage, transition states, or to
highly correlated compounds like transition metal complexes is impossi-
ble or, at least, questionable since the main prerequisite for the validity
of MM procedures is its application to the ground electronic state of
a molecule without low-lying excitations . Moreover, the MM schemes
usually require rather complex parameterization procedure. The main
advantages of the MM schemes are their low cost and high efficiency
in the prediction of molecular geometry for organic compounds with-
out significant electron correlation. The principal advantage of the QM
procedures is a wide range of problems they potentially apply. The
concert, expoitation of advantages of the both (quantum and classical)
approaches can be achieved by the incorporation of quantum mechani-
cal (QM) description to the MM framework. This methodology, alter-
native to construction of the QM schemes with the O(N) scalability,
leads to hybrid quantum mechanical/molecular mechanical (QM/MM)
schemes allowing another way to bypass the bottleneck of N™-scalability.
The QM /MM schemes describe some relatively small part of the system
where chemical transformations take place by an appropriate quantum
chemical method while the rest (relatively inert environment) is covered
by classical force fields (molecular mechanics). The practical useful-
ness and general validity of these approaches is based on the chemically
motivated observation: chemical transformations usually affect only a
small part of the whole system (reaction center) while the role of sur-
rounding groups and molecules is reduced to modification of the PES
due for example to some polarization or steric strains. This situation is
characteristic for chemical reactions of biological interest (especially, for
catalysis by enzymes).

Since the seminal work by Warshell and Levitt [32] the hybrid QM/MM
schemes of calculating large molecular systems acquired an increasing
popularity. There is a big variety of different hybrid approaches de-
scribed in the literature [33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43]. Even-
more, numerous cases of separating electronic variables like m-electron
models [44] or even taking into account explicitly only valence electrons
in semiempirical methods [45] can be considered as special cases of hy-
brid schemes since they also bear the family marks of the QM/MM
approach, namely, (i) the separation of the system into parts, and (ii)
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treating these parts on quantum or classical levels, respectively. Very
close to the QM/MM modeling is a problem of constructing effective
fragment (group) potentials which can affect the quantum chemically
described part of molecule modeling the influence of environment [46,
47, 48, 49, 50, 52, 53, 54, 51]. In such a broader sense several other
problems in the area of computational chemistry seem to be related to
the QM /MM context: these are the problem of embedding in the cluster
calculations on solids and their surfaces with special attention to adsorp-
tion and catalysis problems; the problem of description of solute/solvent
effects for reactions in condensed media; the pseudopotential descrip-
tions of of molecular and atomic electronic structure to list several most
important. Usually all these areas are considered separately without
an attempt of establishing relations among them. Also a great variety
of different specific schemes referred to as ”protocols” implemented in
different packages are normaly considered only from the point of view
of their practical feasibility and their fit for particular applied purpose,
rather than in a context of their exact placement among other approxi-
mate methods and of evaluation of relative precision of that or another
approximation.

The QM /MM modeling can be placed in the general context of com-
bination of different level descriptions. We should mention that the hy-
brid QM/QM schemes are well known in the literature. Some schemes
by construction are far enough from the QM/MM construction since
the separation on parts is performed not on the geometrical principle
but on the principle of necessity of correlated description to some de-
localized orbitals. Well known examples of such an approach is the
complete active spase self consistent field (CASSCF) scheme [55] and
GVBCAS method [56] combining generalized valence bond and CASSCF
approaches which can be considered as three-level scheme. The effective
crystal field method developed for calculation of d-d spectra [57] and
its extension designed to treat catalytical systems [58] can be consid-
ered as taking an intermediate position in this ierarchy since they use
some strictly localized one-electron states (for example, d-orbitals of one
transition metal ion) as a high-level subsystem treating it on the full
configuration interaction level with delocalization corrections taken into
account perturbatively. The QM/QM schemes similar by construction
to QM/MM ones (geometric separation on parts) are also quite popular
and should be specially mentioned since they have many common prob-
lems . For example, the IMOMO method [59, 60, 61, 62] integrating
molecular orbital approximations of different level is very similar in the
way of construction, main principles and physical contributions taken
into account to the QM/MM IMOMM method [38]. Another example
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of such a construction is the QM /DIM (diatomics-in-molecules) scheme
[63] which takes the interactions between subsystems in the first order of
perturbation theory. This scheme can be brought to a type of QM /MM
one by relevant significant simplifications [63, 64]: by ignoring, first, the
differences in potential curves of diatomic fragments due to angular and
spin momentum, second, the couplings between the states of the same
symmetry, and multicenter electrostatic contributions. The scheme pro-
posed by Néray-Szabd et al [65, 66] is especially interesting here. It
uses strictly localized bond orbitals (SLBOs) for the environment and
the SCF procedure for the fragment of particular interest. Note that in
the case of large systems the calculation of SLBOs can be very time-
consuming process, so the transition to the MM scheme for the environ-
ment is an important and almost unavoidable step for calculations of
biopolymers.

It should be noted that the hybrid quantum/classical schemes ap-
ply not only for determination of geometries, energies, and reaction
mechanisms. The Monte Carlo [67, 68] and molecular dynamics (MD)
[69, 70, 71, 72] simulations are quite popular as frameworks for which
various QM /MM procedures serve as "subroutines”. Before employing
hybrid schemes the large-scale MD simulations were performed only with
low-level approximations for force fields. The use of hybrid schemes ex-
tends significantly the scope of their application, improve precision of the
results that allows to improve the understanding of statistical properties
and dynamical processes in liquids and biopolymers.

The area of the QM /MM modeling is not a steady one since there are
many unsolved problems mostly caused by ad hoc character of construc-
tion of junction between subsystems. Despite a general claim of being
stipulated by ”specific practical needs” the ad hoc junction constructs
present in the literature frequently lead to more or less serious technical
("practical”) problems in construction of hybrid schemes. This point is
stressed in Refs. [73, 74]. The most direct application of hybrid schemes
is in the case of solute/solvent interactions since the border between
quantum and classical parts of the whole system in this case is naturally
defined by the division of the whole system into individual molecules or
ions. In this case the environment (classical) variables can be chosen in
many different ways, ranging from continual models with special prop-
erties [72, 75, 76, 77, 78] to the discrete ones explicitly employing the
information on the structure of solvent molecules [79, 80, 81, 82] through
some intermediate schemes adopting advantages of both extrema [83, 84]
are also possible. Nevertheless, even in such a transparent case the prob-
lems occur when the formation of complexes between solute metal ions
and solvent molecules has to be considered. In this case some solvent
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molecules may have to be considered either as part of QM system when
form a close contact with the metal ion or as a part of the MM system
when they are absorbed by the solvent bulk. Approaches to construct-
ing relevant force fields in this situation are discussed in Ref. [85]. An-
other important area of applications is solid state and surface chemistry
[37, 39, 86, 87] with catalysis and adsorption by oxide systems as the
most popular objects. In this case the subsystems are very polar and
usually charged, so a special attention should be paid to electrostatic in-
teractions between subsystems. The most important problem in the field
of embedding is the unphysical polarization of the QM subsystem (clus-
ter) and the related necessity to adjust effective charges on the ions to
obtain sensible results. It should be noted that the most difficult and not
trivial case of separating quantum and classical subsystems is that of co-
valently bound systems since the electrons in chemical bonds connecting
two regions are highly correlated. At the same time this case seems to be
very actual (especially for biological applications) and requires thorough
consideration. In this paper we consider the hybrid QM/MM schemes
with covalent linkage between regions in more details, give account of the
"state-of-art” in this field, and show how the junction between quantum
and classical subsystems can be constructed in a consistent (not ad hoc)
way by deriving it from an underlying QM description with an emphasis
on the choice and refinement of one-electron states related to the inter-
subsystem boundary and the related parameterization. We consider the
possibility of subsequent derivation (i.e. proof) of the model is an argu-
ment in favor it (in mathematical sense) while the absence of derivation
(or its impossibility) as a contra argument.

The paper is organized as follows. In the next Section we formulate
the physical principles of constructing hybrid QM /MM schemes and il-
lustrate their application by separation of electronic variables in the
framework of the effective Hamiltonian technique and by derivation of
renormalization of QM and MM parameters in the framework of the
deductive MM formalism. In the third Section the outline of existing
approaches to QM /MM intersubsystem junction is given with numerical
examples confirming theoretical conclusions and analysis from the gen-
eral principles given in the second Section is performed. Finally, a brief
conclusion is given.

2. Physical principals of constructing QM /MM
schemes

The structure of the area of the QM/MM modeling is obscured by a
great deal of the recipes proposed and by the lack of sequential deriva-
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tions of them. The situation is partly caused by the structure of the
MM itself — the MM scheme is not derived but is taken on the ground
of some intuitive concepts of what classical terms must enter the en-
ergy energy with adjusted parameters for the latter. We extract here a
minimal set of the most essential facts (physical principles) which are
necessary prerequisites for constructing hybrid schemes:

1 Chemical transformations are local and the perturbation caused by
the environment is small. This principle is confirmed by all the
experimental chemistry — the concept of the reaction center and
mechanisms of chemical reactions affecting only several chemical
bonds. The very concept of chemical bond is mostly due to the
local (in many cases one bond) nature of chemistry.

2 The system can be divided on parts and different level approzima-
tions (quantum or classical) can be applied to different parts of the
system. The size of the quantum subsystem should be determined
by the locality of transformations and not by the intention to move
the boundary far from the reactive center to mask the errors in the
junction construction. In the case of three-dimensional structures
significant shift of boundary from the reactive center is problem-
atic since the size of the QM system may become very large to be
covered by the high-level quantum chemistry.

3 Correct form of intersubsystem junction corresponds to sequential
separation of variables. This principle simply states that the con-
struction should be made not in the ad hoc manner.

4 Separation of system into parts should be performed in a manner
in which fluctuations of electronic density between subsystems are
small, i.e. chemical bonds are not to be cut. This requirement
seems to be quite natural since both QM and MM schemes work
properly only in the case of systems with well defined numbers
of electrons. The developed QM schemes operate with the many-
electron states which are eigenstates of the number of particles
operator. FEven if the bond to be cut is not polar and the diagonal
one-electron densities can be set equal to integers and thus the
average numbers of electrons in subsystems are also integer the
situation does not change since according to Ref. [88] the one-
electron density is separable only for the wave functions where the
intergroup electron transfers are projected out. It is definitely not
a good approximation for two ends of a chemical bond which can
exist only in the case of a nontrivial QM superposition of the states
with different number of electrons on its ends. The MM description



for a system with fluctuating number of electrons is not defined as
well.

5 There exists a QM description underlying the MM one. It means
that the form of junction is not arbitrary but essentially defined
by one-electron states arising from the underlying QM description.

These points are very general. Now we consider in more details the
practical implementation of these principles.

2.1 Effective Hamiltonian technique

As a first step for derivation of junction we consider a general formu-
lation of separation of electronic variables of quantum subsystem from
those describing electrons in the classical (MM) subsystem which provide
a consistent form of intersubsystem junction. This separation is based
on the Lowdin partition technique [89] and the McWeeny group function
formalism [90]. Generally, we construct an effective Hamiltonian for the
QM subsystem in the presence of classical environment and the PES of
combined system. This strategy was proposed and developed in Refs.
[73, 74, 91]. Practically it is based on the assumption of existence of a
QM scheme underlying the MM one.

We consider two subsystems R- (reactive, quantum) and M- (inert,
classical). The electronic Hamiltonian for the whole system is a sum
of subsystem Hamiltonians and of their interaction which is taken to
comprise the terms of two types — the Coulomb V¢(q) and the resonance
(electron transfer) V" (q) interactions:

H=H"q)+ H"(q) + V(q) + V'(q). (1)

The Hamiltonian for the M-subsystem is a sum of the free M-subsystem
Hamiltonian H}(q) and of the attraction of electrons in the M-subsystem
to the cores of the R-subsystem Vf(q). Analogous subdividing is true
for the R-subsystem. The ”exact” wave function of the system can be
represented by generalized group function with number of electrons in
subsystems not fixed:

U= > Cfi({na)) \ @, (na), (2)
{na} {ia} @

where ®f (n,) is the i-th ne-electron wave function of the a-th group
and electron distributions {n,} satisfy the equation:

Zna = N.; Ya,n, > 0. (3)
«
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The coefficients Cfia} ({nq}) should be determined on the ground of vari-
ational principle.

The function Eq. (2) is very general and does not correspond to the
assumed wave function of the hybrid QM/MM method. First of all the
numbers of electrons in the subsystems must be fixed to apply com-
putational schemes to separate parts on the legal ground. Second, we
assume that the M-subsystem is treated with use of the MM, i.e. the
PES of the M-subsystem is evaluated without explicit invocaion of its
wave function. The parameters of the M-subsystem must be transfer-
able, i.e. applicable to combination with any R-subsystem and even in
the absence of it. For this purpose we should use the wave function of
the ground state of the effective Hamiltonian for the M-subsystem since
it is in a certain sense close the wave function calculated without any
R-subsystem [73]. Thus the required wave function is represented by the
antisymmetrized product of electronic wavefunction for the R-subsystem
and that of the ground state for the free M-subsystem:

Ty, = oFF A Bl (4)

It is obtained from the exact wavefunction by two sequential Lowdin pro-
jection procedures: the first one to the subspace of the states with fixed
number of electrons in the subsystems (projection operator P and its
complementary projection operator Q = 1 — P) and the second one — to
the states with the ground state wavefunction of the free M-subsystem as
the multiplier (projection operator P and its complementary projection
operator @ =1 —P).
After the first partition we obtain

H.p¢(q, E) = PH®(q)P +2PHM(q)P + PV*(q) P+
+PV'(q,E)P+ % . ZRZNR,L, (5)
AZB

where the second order resolvent contribution coupling two one-electron
transfers between the subsystems is:

V" (¢, E) =V"(q)Q(E — QHQ)"'QV"(q) = V" (¢)QR(q, E)QV" (q).
(6)
The Hamiltonian of the type Eq. (5) is typical for the ECF method [57],
where projector P corresponds to the SCF wave function of the ligands
in transition metal complex. The second projection and subsequent
averaging over the ground state of the M-subsystem gives the effective
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Hamiltonian for the R-subsystem:

Heff(Qv Ev ) (Q) + 5VM(Q)
+((PV™(q, E)P)) 5 + ((PVE(q)P >>M+ (M)
+{{(PW(q, E)PQOR(w )QPW(q, E)P))y + 5 Z Z{Z5 Ry,

where the symbol ((...)),, corresponds to the averaging over the ground
state of the M-subsystem <<I>é\6[’ \{)6\6{>, the averaged operator

VM (q) = V¥ () + ((PV(a)P))y (8)

is close to the zero for quite typical case of M-subsystems with zero
overall charge and

PW(q, E)P = PV¢(q)P + PV"" (q, E)P + PVE(q)P. (9)

To perform the averaging explicitly a form of the wavefunction for the
M-subsystem should be specified. At the same time some simplifica-
tions of the expression Eq. (7) can be made on quite a general level.
For example, the second order contribution from the resolvent of first
partition expressed through one-electron states of subsystems is:

(PVT(@. E)P)) = X X vrm(@vem (@)X
rr'€ERmm/eM

{ % ) el Gl (1, - B)+ (10
pEIm(’)R(NR—l) )

> rlp) (P tat A, - B,
pEImOR(NR—H)

where G("¢Y) (¢) and G(*®) (¢) are the retarded and advanced one-electron
Green’s functions for the M-subsystem, respectively.

The renormalization of the bare R-subsystem Hamiltonian leads to
addition of some interaction terms to the sum of energies of free subsys-
tems. The PESs for the whole molecule are obtained by formula:

& = B+ BN, (11)

where EE is the k-th eigenvalue of the effective Hamiltonian of the R-
subsystem:

E1§:<‘I>kR( ‘ eff‘q)k > (12)

and E}{ is the energy of the M-subsystem which is parameterized in the
MM form. The detailed analysis [91] of the effective R-subsystem energy
E,f allows to present it in the form of a sum of contributions of different
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physical nature. By construction the general consideration of junction
is close to that of intermolecular forces. At the same time there are
some important differences: the hybrid schemes require consideration of
boundary atoms; the special form of the wave function of inert subsystem
is required; the resonance terms cannot be neglected. The correction to
the k-th eigenvalue of the bare Hamiltonian (i.e. the difference between
Ef with and without environment affecting the reaction center) is

AE, ~ AE{™ + AE] + AEM? 4 AE" + AEJ™ + AEF™ (13)

where the leading contribution AEgl“”t is of the first order with respect
to the perturbation operator and originates from the electrostatic inter-
action between the subsystems, it can be expressed through the charges
on the atoms; the next three contributions are of the second order and
follow from the coupling of one-electron transfers between subsystems,
of Coulomb electron-electron interactions between them, of interactions
between electrons of the M-subsystem and cores of the R-subsystem;
and of interaction of the Coulomb electron-electron interaction with the
interaction of the electrons of the M-subsystem and cores of the R-
subsystem; the second term can be regarded as dispersion interaction
between subsystems. Its general form is:

AE%sP = — > (rr|mm)(r'r |m'm') x
rr'€cRmm’eM
o0
R
rr!

(14)

(iw)mM  (iw),

x [ dwr o (
0

R . M . . .
where 7, (iw) and 7, . (iw) are the reduced polarization propagators

for the R- and M-subsystems. The sum of the contributions AEZZSP and
AE,?OUZ has a physical meaning of the second order interaction between
the electronic polarization in the M-subsystem and the polarized R-
subsystem. The last two contributions to Eq. (13) correspond to the
third order in the interaction between the subsystems originating from
the coupling two projection procedures. Physically it corresponds to
interaction between two one-electron transfers and Coulomb interaction
between electrons of the M-subsystem with electrons and cores of the
R-subsystem. The explicit form of these contributions is given in Ref.
[91].

2.2 Deductive MM formulation and boundary
one-electron states

2.2.1 Semiempirical APSLG-MINDO/3 approach. Gen-
eral physical principles of constructing hybrid QM /MM approaches state
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that the subsequent derivation of junction between quantum and classi-
cal subsystems requires a QM wave function underlying the MM descrip-
tion of PESs. This QM method is necessary, for example, to perform
averaging of the effective Hamiltonian in Eq. (7). At the same time
more important that this method should produce in a consistent man-
ner one-electron states necessary for explicit formation of boundary and
its response on the changes in molecular geometry of fragments and/or
electronic structure of the R-subsystem.

There are some general criteria for the QM method appropriate for
underlying the MM description: this method should express molecular
electronic structure and electronic energy in relevant local terms (i.e. to
distinguish bonded and nonbonded contributions) and reproduce molec-
ular properties with sufficient accuracy. The parameters characterizing
the wave function of this method (electronic structure parameters or
ESPs) have to be transferable in a broad sense of the term ”transferabil-
ity”, i.e. the form of any bond-related functions (e.g. the bond energy
dependence on interatomic separation) must be also transferable. As an
appropriate method satisfying these conditions we take the trial wave
function in the form of antisymmetrized product of strictly localized
geminals (APSLG) [92] implemented with slightly modified semiempiri-
cal MINDO/3 Hamiltonian [26, 27]. The APSLG wave function is con-
structed from two-electron building blocks — geminals:

@) =[] g% 10)- (15)

Each geminal corresponds to a chemical bond or to a lone pair and it is
expressed as a linear combination of singlet two-electron configurations
constructed from two (in the case of chemical bond) or one (in the case
of lone pair) hybrid orbitals (HOs) assigned to the geminal at hand:

g;rz = umrﬁzar;ﬂ + Umlﬁzal;ﬂ + wm(rﬁzal;ﬁ + l;rzar;zﬂ)

1
u?, + vk +2w2 =1 (16)

The first two configurations are ionic with two electrons at the end of
bond while the last is the covalent (Heitler-London) one. In the case of
lone pair only first configuration survives with the coefficient u,, = 1.
The HOs |ry,) and |l,,) correspond to the right and left ends of the
bond and are formed by 4x4 orthogonal (SO(4)) transformations of
atomic orbitals basis sets for each "heavy” (non-hydrogen) atom. The
amplitudes of the geminals Eq. (16) and parameters of the SO(4) trans-
formations are determined by optimizing the energy. The variational
character of the one-electron states is an essential factor for use of the
APSLG-MINDO/3 scheme in the construction of boundary between R-
and M-subsystems.
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The important feature of the APSLG-MINDO/3 energy is that it is a
sum of increments of different form for bonded and nonbonded atoms:

Eqa= Y [2ULPY + (tptm|tmtm) T D]+

tm €A
+2 Z g . PttPt’t’
tp<tl €A bt (17)
Ebo::dm — Z’YRmLm [Frl 2Prrpll] 4/8RmLm Zzlv
Enonbond QAQBVAB

where U}, is the matrix element of attraction of an electron at the ¢,,-th
HO to its own core, ﬁfﬁim is the intrabond resonance integral, (4 is
the Mulliken charge on the atom A, 7,3 is the two-center Coulomb inte-
gral, and gz;"ﬂn = 2(tytplth th VT — (tt! |t! t) Tk is the doubled reduced
Coulomb integral. The ESPs of two types enter the expression Eq. (17):
(i) the intrabond elements of one- and two-electron density matrices

BiY = (0 lanthigtiosi 0) . T = (0]gmts stitatimatmagih] 0)
Prm= 2 +w?, P” =2, + w , Pl =plr = (um + Vi ) Wi (18)
F% _ Fll — 2) Frl — Flr — ,w

where ¢ and ¢ are either 7 or [, and (ii) the hybridization matrices
defining molecular integrals in the basis of HOs.

The results of Refs. [26, 27] related to heats of formation and equilib-
rium geometries obtained by the APSLG-MINDO/3 method are some-
what more accurate than those of the standard (SCF-)MINDO/3 method.
The APSLG form of the trial wave function also ensures its correct
asymptotic behaviour under cleavage of chemical bonds which indirectly
justifies some level of bonae fidelitatis of the wave function employed.
The APSLG form of the wave function also allows to represent a renor-
malization of the bare R-subsystem Hamiltonian in terms of well-defined
characteristics like atomic charges, bond polarizabilities and ionization
potentials for the chemical bonds [74, 91].

2.2.2 Deductive molecular mechanics. In the framework of
QM/MM junction construction we should determine the structure of
boundary one-electron states and their responses to variations of geo-
metric parameters. The problem of constructing optimal boundary HOs
is closely related to the more general problem of deduction of the MM
description from some consistent QM description of electronic structure.
This problem is actual since the form of the force fields and their partic-
ular sets of parameters are not justified that leads to a great variety of
different MM schemes. The semiempirical APSLG-MINDO/3 method
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briefly described above is a perfect candidate for the MM derivation and
it was successfully used for this purpose in Refs. [93, 94]. Here we de-
scribe the main steps of the MM derivation and their consequences for
the QM /MM modeling.

To derive the MM picture we must consider the question of transfer-
ability of the ESPs. Above we defined two groups of parameters entering
the expression for the energy Eq. (17). Let us consider the first group of
parameters. In the case of lone pairs they are perfectly transferable. The
SCF approximation for non-polar bonds gives the geometry independent
density matrix elements:

| N (19)

This picture can be termed as FA (fized geminal amplitudes) [93]. It was
shown in Ref. [95] by analysis of the bond energy that two small param-
eters (functions of molecular geometry) for each bond ¢! and i, can
be defined. They describe intrabond correlation and bond asymmetry,
respectively. The extent (degree) of transferability of the elements of
density matrices is given by expression of them as power series on the
parameters. The contribution of the zeroth order in i, is:

| 1 1 ¢
Ftt i <1 _ ttl > Ptt i PT’l — m 9

where T'((,,) = /1 4 (2,, while the correction of of up to second order
in p, results in slightly modified values:

1 _ 1 2T (Cm ) +1)(1-T'({m
T'((m)—1
Pl = Pty [1+ tumree2d7 | (21)
rl _ prl 2 20(6m)+1-T%(Cm)
Pil = Pily [1+ i, 25

where subscript 0 corresponds to the estimates by Eq. (20). From these
estimates it can be concluded that the bond order (2P?) is transferable
up to second order with respect to both parameters (.1 and pn,; the
bond covalency (2I'")) is transferable up to second order with respect to
pm and up to first order with respect to ¢,,}; the bond polarity (P!’ —
Pl) is transferable up to first order with respect to both ¢.* and fi,.
The transferability of bond orders is the most important for the MM
derivation. The picture of Egs. (20) and (21) can be termed as TA
(tuned geminal amplitudes) [93].

The specific bond equilibrium distance can be obtained as the mini-
mum position for the bond-related energy. The core-core interaction in
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the MINDO/3 scheme is not purely Coulomb one but is modified by a
short-range repulsion term:

1
Enn = 5 Z Caﬂa Caﬂ = ZozZﬂ('Yaﬁ + Daﬂ)- (22)
aFh
In the case of non-polar bond Eq. (20) the minimum condition is:
90 = LR L85 276 8y (23)
_1(1_- _1 OVRmLm _ 0
2 ( L(Cm) dq ’

since the derivatives of the ESPs exactly compensate each other. In the
limit ¢, — oo we recover the FA picture. The elasticity constant for the
bond stretching in the FA picture is:

kR,.L,, =
) RmLm
—(Zp 71 DRy, 282ﬂrmlm  1d*YRp Ly (24)
memm drfemLm 8r?{mLm 2 dr?{mLm 0

"RmLm

It should be noted that the short-range repulsion is due to specific core-
core contribution Dpg r,..

General construction of the MM scheme and analysis of adjustment
of one-electron states on the QM /MM boundary can be performed us-
ing linear response relations between the geometry parameters and the
ESPs. These relations can be obtained by expanding the energy up to
the second order with respect to both atomic coordinates ¢ and the ESPs
z with subsequent minimization:

r—Ty=— (vmva)_l v:vqu(q - QO)' (25)
It leads to the following energy expression:

E=Ey+3(q—q|VeVeE|lq—q)—

(o a|V VBB VB -a),

which depends on the geometry variables ¢ only. An important compo-
nent of the MM construction is determination of the source of angular
dependence of the energy which in the APSLG-MINDO/3 approxima-
tion is determined by the hybridization. It can be shown [95] that the
one-center energy is hybridization dependent only if subtle polarization
and correlation effects are taken into account. At the same time the hy-
bridization is a kind of coarse phenomenon which can be reproduced even
by methods without intraatomic electron-electron repulsion [96]. There-
fore, the resonance energy should be considered as the main source of
the hybridization.
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Mathematically the hybridization of the sp-basis at a given atom is
defined by a SO(4) rotation. Each HO is thus a normalized quaternion
with a scalar and a 3-vector parts (s, 7y, ). The set of four vector parts
of HOs forms a hybridization tetrahedron with vectors v, pointing to
its vertices. In principle, deductive MM can be constructed as a set
of classical type equations for these tetrahedra [85]. Here we consider,
however, more common case of the MM force fields. The dynamical
SO(4) group can be parameterized by a pair of normalized quaternions
corresponding to fictitious rotations combining the hybridization (s-p
mixing, pseudorotation) and rotation of hybridization tetrahedron as a
whole (quasirotation). At the same time the first order variation of the
HOs when small quasi- and pseudorotations d&; and §c, are applied to
the system of HOs can be derived in a very simple form:

5(1) (50‘_jba _’)7

g = séwb + ddd; X U, (27)

where X stands for the vector product of 3-vectors.

Let us demonstrate an application of formulae Eqs. (25) and (26) on
the example of methane molecule with sp® hybridization. The stereo-
chemistry of carbon atom is characterized by four unit vectors é€r_ r,.
corresponding to the directions of the CH bonds. In the diatomic coordi-
nate frame with the z axis directed along the €g, 1, vector the resonance
integrals are:

CH = gCHC 1 BSH(TC Eem,,)- (28)

The equilibrium conditions for the form and orientation of hybridiza-
tion tetrahedron can be obtained by zeroing the pseudotorque N and
quasitorque K which are coefficients at §&, and 0&; in the resonance
energy expansion:

= 42})7“[{60(7]{—’0 ﬁc;-H'SCBCHm} = 07

_4213”50 €cm,, X TEm = . (29)
The solution of the set of these equations in the case of symmetric hy-
dride (methane) is the hybridizatation with all vectors 7 directed along
vectors €cp,, -

The fixation of parameters &, (those of the shape of the hybridization
tetrahedron) can be considered as FO (fized orbitals) picture [93]. In this
case only the resonance energy is the orientation dependent contribution.
The angular dependence of the energy (bending) can be described by
introducing small rotation vectors d¢,,, which after applying them to
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vectors €, 1. lead to new (distorted) coordination tetrahedron. The
final result of substitution of second derivatives of the energy to Eq. (26)
is the explicit expression for the bending force field constant which can
be written as:

kuon = BEI{PH(TS, Ecn,,) + P (5 éca,,) b (30)

i.e., as a sum of two separate single bond contributions. Moreover, it
can be proven [94] that adjustment of hybridization tetrahedron to the
geometry deformation does not modify the expression Eq. (30) in the
FO picture.

In general both orientation and form of hybridization tetrahedron
must be adjusted. This picture can be termed as TO (tuned orbitals)
[93]. The reaction of hybridization tetrahedron on the changes of lo-
cal geometry can be considered in the linear response approximation
Eq. (25). In the case of valence angles deformation the algebraic struc-
ture of the SO(4) manifold ensures quite special structure of geometry
deformations which can cause changes in the form of hybridization tetra-
hedron. These deformations (hybridization compatible) correspond to
increasing of a valence angle by certain amount 46y, with simultaneous
decreasing of the opposite (spiro) angle by the same magnitude. Sub-
stitution of matrices of second derivatives for the energy into Eq. (25)
gives the reaction of the form of hybridization tetrahedron on the angular
distortions of molecular geometry in the form:

,BCH

a
V2(VBBEH + BT (
provided the parameters dy1,, describe the hybridization compatible de-
formations of the coordination tetrahedron. The same considerations

also apply to the bond stretching where variation of the resonance pa-
rameters can be presented as:

0BG =S orem,,- (32)

0y = — Sx12k+0x137 + 5X14;) , (31)

The response of the form of the hybridization tetrahedron on the change
of the bond length can be written as:

CH =C CH .C>
\/§ ’YO'O' vm - ’YCO' SmeRmLm

0y = — orcH,, 33
2 VAR 4 A .
that leads to the following expression
CH _ ,CH\2
PE 1 rl (\/g’}/aa ~— Yo ) (34)

Orcu,Orcu,,  2V3 V3BSH + pCH
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for the off-diagonal term corresponding to coupling of stretching for two
incident C-H bonds.

2.2.3 Implications for QM /MM methods. The above re-
sults constitute a basis for construction of intersubsystem junction in
hybrid QM/MM schemes. There are two different effects arising from
separation of system on parts and consideration of one part as a MM
one — renormalization of the QM Hamiltonian parameters and imposing
additional forces and torqes on the MM subsystem. Let us exemplify
the technique of short-range intersubsystem junction construction by
one special but quite characteristic case of a boundary sp® carbon atom
with one HO pointing to the QM region (bond m = 1) and others related
to the MM one (this case can be classified as the MM boundary atom).
The transition to the MM picture is performed by setting the FA and
TO approximations. To determine the effect of the QM part on the MM
part we consider the perturbation of molecular energy due to changes
of electron densities in the QM region. It affects both one-center en-
ergy of boundary atom and resonance energy between HO r; of the QM
bond with number m = 1 and all other HOs in the QM subsystem. The
perturbation sets up quasi- and pseudotorques for the boundary atom:

= 25{(0Pro Bl + 0P AR e a+

+5R1A(5P £€R1A + 0P 4)} X T
N' = —sfgfug(prr — PiH2U, — 2U, 4 Cy 4 Cs + 2C5]+
(1/2 - F”)[Oz +2C5(s Rl) J}+ (35)
+2 z{(apwﬁR 1A 4 6P, Bt )i —

(5P7“10 R1A+5PT1§IBCC )31 €R A~
—BRiAg R1(5Pr1£eR1A + 0P 0v€R, 4) 1

where é%lA, €h 4> and €g,4 = é%lA are the orts of the DCF defined by
the R; A pair of atoms and (5, (s, and C5 are linear combinations of
the Slater-Condon parameters:

C3' = 2Fg (sp) + 4G{(sp) — 2F5" (pp) — 8F5* (pp),
C3t = Fgt(ss) — 2F' (sp) — 4G (sp) + F3'(pp) + 4F5* (pp), (36)
Cit = 2F3 (sp) — G{'(sp) — 2F3*(pp) + TF5" (pp).

The additional pseudo- and quasitorques produce the pseudo- and
quasirotations of the hybridization tetrahedron on the boundary atom
R;. In the linear response approximation it corresponds to the treatment
of the corresponding pseudo- and quasitorques by the (V%E)_1 matrix
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which is simple (diagonal in tha basis of &, and 0&;) in the case of
symmetric hydride:

N/
4P7Al(ﬁo’o’+ﬁ§a’/\/§) ’ (37)

= \BK'
0 = 8PI5,

0y = —

and, therefore, the hybridization tetrahedron aquires new form and ori-
entation which can be inconsistent with the MM atoms’ positions. Tt
corresponds to additional classical forces and torques acting on the MM
neighbours of the boundary atom at hand. The forces are directed along

the €g,,1,, vectors and stem from two sources: the variation of the shape
of HOs:

1 R Lim, gL 7Rom _
fbm (ﬁ00+ﬁ »/V3) ({ Yoo Sm Um™
Yol O T Y S S Ry L+ Y P ST T (38)

RmLm mLm m Ly, »
"‘('Ygg — ) s Umn¢ €L R }> N)

and the variation of the hybridization tetrahedron orientation:

Lm m m m mo__
4ﬁ§ ({ ’Y L eRmLm X U fy7T7l' ml UL X UR (39)
RmLm mLm o Lm 5 m
(’YCC 77]'?71' L ) mC eRmLm X UR } Kl)

Analogously, torques acting upon the neighbouring to boundary MM
atom Ly, are due to variation of the form of hybridization tetrahedron:

—

—__ 1 rpBm I
fom = 2(Boo+Bco/V3) {Bag " (€Rp L X v ™) (T N )—
—sBn[glinimgLn 4 (§Rnlm _ gRulnylnien 1 x N'—  (40)

(ﬁRmL’” ﬁRmL’") (eRmLmXULm)(eRmLmaN')}

and its orientation:

(5R’”Lm 5R’”Lm)[ U (G © Ry — RZ”IH (41)

—

+(€RmLm X vLm) ® (eRmLm X UTIR;m)]}K,

It should be noted that the MM subsystem also affects the parame-
ters of the QM subsystem since any geometry deformation in the MM
subsystem induces changes in pseudo- and quasirotation angles defining
hybridization of the boundary atom. It renormalizes the QM one-ceneter
Hamiltonian parameters according to:

5U1 —2(U U,)si (5%,*&),

§ (ryry | rrn)™ (C st 4 20, (sF) ) (6, 7). (42)



20

The resonance integrals in the QM subsystem are also renormalized. In
the DCF their modification can be expressed as:

5R1A ,8R1A5 1 1y 5R1A5 (1) UlC ’

rio

5/8R1A — /BRlA(S(l Rl + /8 1A5 1)
65,%?1;“ ﬁfﬁé

where variations of HOs are given by Eq. (27).

To illustrate the formulae given above we performed the estimates of
the magnitude of the renormalization of the QM parameters and changes
in the QM forces and torques due to boundary taken as sp? carbon
atom. The changes in the QM one-center Hamiltonian parameters due
to elongation of one of the boundary MM bonds are:

8U1 BV 8(t1t1|t1t1) eV

— = —-1.162—; ————= =0.537T—, 44

87’2 A 87"2 A ( )
while the corresponding effects due to change of the bond angle between
two boundary MM bonds are:

8U1 eV 8(t1t1|t1t1) o eV

= 0.755—; =—0.349—. 45
Ox23 rad’ Jx23 rad (49)

At the other hand the changes in the one- and two-electron densities of
the QM boundary bond lead to the following forces and torques acting
on the neighbouring MM atoms:

fbm = [~2.2250P + 0.4650T] 5
= [2.8916 P — 0.6044T uxel e

[€m x&1] Tad*

(46)

The numerical estimates show that in the case of variational determi-
nation of one-electron states the effect of the boundary (besides electro-
static, van-der-Waals etc. contributions) can be considered as a rela-
tively weak perturbation.

3. Characteristic recipes of QM /MM modeling

In the present Section we employ the theoretical framework devel-
oped above to rationale the state of art in the field of hybrid QM/MM
modeling. It is instructive to invoke different classifications of QM /MM
schemes developed. The simplest but not very much informative classi-
fication can be based on the types of quantum mechanical and molec-
ular mechanical schemes used. There are no fundamental restrictions
on the choice of the QM schemes and in fact very large diversity can



PHYSICAL PRINCIPLES OF QM/MM 21

be found in the literature. All types of QM procedures — ab initio
[41, 67, 86, 97, 98, 99, 100], DFT [68, 79, 101, 102, 103, 104, 105], and
semiempirical [36, 106, 107, 108] — are quite popular and widely used
as well as in usual quantum chemical studies. The usual form of wave
function implied is the SCF one. At the same time methods based on
the valence bond approximation are also well known [35, 99, 109]. The
choice of the MM scheme can be quite important since it affects the
structure of bonding terms near (or in some schemes on) the border be-
tween the QM and MM parts and the electrostatic polarization of the
QM part by the MM-treated environment environment depends on the
particular charge scheme employed in the MM procedure. Practically,
it is more convenient to work with the force field with electrostatics
based on the atomic charges than with the force field using bond dipole
interactions for this purpose since it can cause significant errors in the de-
scription of polar species. This notion have led the authors of Ref. [110]
employing the MM3 force field [111] to replacing the the bond dipoles
with potential-derived atomic point charges. We note that the sequen-
tial derivation of junction in the framework of the effective Hamiltonian
approach reported in leads to representing electrostatic interactions in
terms of atomic charges [112]. If the force field contains many explicit
couplings between bonded interactions (like the MM3 force field) it may
cause additional problems with construction of junction. Some words
should be said about ionic force fields using formal ionic charges and
employing electrostatic and short-range force fields. In the case of these
force fields short-range interactions arising from the MM charges can
not be separated from the long-range interactions [43]. These schemes
often lead to incorrect electrostatic potentials so the most popular choice
(especially in description of covalently bound QM/MM systems) is the
valence force fields. Different implementations use different force fields:
for example, the MM3 force field [111] is used in Refs. [110, 113], the
CHARMM force field [114] is used in Refs. [34, 115], the AMBER force
field [116] is used in Refs. [33, 117].

In the previous Section we obtained the formula for junction between
quantum and classical subsystems Eq. (13). The control for the types of
interactions which are taken into account is an important characteristic
of particular QM/MM scheme. The authors of Ref. [110] have proposed
a classification of hybrid schemes based on the interaction between frag-
ments. According to it, the simplest type of model is mechanical em-
bedding (examples of this type of modeling are the IMOMM [38] and
IMOMO [59] schemes by Morokuma) when both QM and MM systems
are not polarized by each other and their interaction is represented by
classical force fields only. In this context the choice of parameters of in-
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tersystem interaction can be crucially important, so, they are frequently
optimized [97, 118]. More elaborated model is that including polariza-
tion of the QM subsystem. This polarization can be covered by including
the MM charges into one-electron part of the Hamiltonian of the QM
subsystem:

hﬁoyl = h,ul/ - Z qMVp]\u/Iv (47)
M

where M is the atom of the MM subsystem and ¢ is its charge. This
type of modeling is quite popular [34, 119, 120]. At the same there is an
objection against such schemes since they violate the principle that actio
should be equal to reactio [121] (no effect on the part of the QM system
upon the MM system is assumed). The most elaborated is the scheme
including classical treatment of the MM system polarization [122]. This
type of approaches is rarely used though the MM polarization was taken
into account even in the early scheme [32] by using atomic polarizabil-
ities. Practically intersubsystem polarization corresponds to dispersion
interaction Eq. (14). We should note that using atomic polarizabilities
and adding the corresponding diatomic terms to the PES is not always
substantiated. For example, in the case of the chemically transforming
R-subsystem the different electronic terms change their relative energies
and thus the positions of the poles of the 72, (iw) reduced polarization
propagator change along the reaction path. This affects the dispersion
energy Eq. (14) but is not reflected by the atom-atom scheme, which is
nevertheless better than nothing.

It should be noted that the classification given by authors of Ref.
[110] is not complete since, for example, it does not include some self-
consistent schemes like that of Ref. [40] and does not consider the possi-
bility of charge transfer between subsystems [74, 91]. The authors of Ref.
[123] have imposed a requirement of intersubsystem self-consistency on
the construction of junction. It means that the charge transfer between
subsystems should be taken into account. Practical implementation of
this requirement was performed by using special iterative procedure of
double (intrafragment and interfragment) self-consistent (DSC) calcula-
tions. It leads to explicit taking into account the electron transfer be-
tween subsystems (and also the polarization of the QM subsystem). This
methodology, however, can not be justified since the self-consistent field
procedures are applied to systems with strongly fluctuating numbers
of electrons that also leads to poor definition of the fragments them-
selves (and of their quantum numbers). According to results of the
previous Section the electron transfers should be considered as virtual
ones and taken into account in the perturbative fashion. This point is
confirmed numerically since the application of the DSC scheme to the
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iron picket-fence porphyrin has led to improbably large intersubsystem
charge transfer of 3.6 electrons [123].

In the case of intersubsystem junction represented by classical bond-
ing terms an important question arises: which terms should be included
and which should not? The most popular way is to include classical
bonded force fields when at least one MM atom is involved in it [33, 34].
At the same time it does not allow to avoid double counting of interac-
tions computed quantum mechanically. To smooth this inconsistence the
authors of Ref. [124] proposed to calculate only those classical bonding
force fields where at least one central atom is from the MM subsystem
or in the case of improper dihedral terms only those with both outer
atoms from the MM subsystem.

The ways to construct the boundary between subsystems and gen-
eral ideas concering the structure of the "grey” zone between quantum
and classical fragments proposed in the literature are miscellaneous. For
example, authors of Ref. [123] pose the requirement of so called ” QM-
MM continuity” that leads to introducing intermediate fragments which
are treated by both QM and MM methods. Since the early times of
quantum chemistry and until now it was popular to make the problem
of molecular structure investigation tractable by neglecting large sub-
stituents and saturating free valencies by hydrogen atoms. The QM/MM
methodology tries to take the bulky substituents into account explicitly.
The most straightforward way to treat covalently bound QM and MM
parts is the link atom method stemming from saturating dangling bonds
produced while cutting the system in parts across the bonds by addi-
tional atoms (usually, hydrogens). This methodology requires deleting
the terms in the expression for the total energy of the system related
to the link atoms. Practically it is very difficult since in the framework
of this scheme serious artefacts appear quite expectedly. It should be
noted that the polarization of the MM subsystem is often reproduced
incorrectly. To cure this error some interaction terms for atoms near
the boundary are typically artificially eliminated. Originally [34], all the
interactions (electrostatic and van-der-Waals) between link atoms and
MM subsystem were not taken into account. Later, different recipes to
omit some real physical interactions and by this compensate unphysi-
cal ones were proposed: the authors of Ref. [124] neglect the Coulomb
interactions between the QM subsystem and the MM group most close
to it, the authors of Ref. [125] force the charge on the boundary MM
atom to be zero. It should be noted that such eliminations can not be
justified and must be considered as special methods for masking the er-
rors caused by the inconsequence in junction construction. In fact, the
problem is often a consequence of the small distance between the link
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atom and the first MM atom. The more complex scheme [126] does not
neglect the interactions of link atom with the MM subsystem but sets
charge on the boundary MM atom to be equal to zero. Another recipe
used is shifting the values of the charges with subsequent compensation
of this perturbation by introducing fictitious dipoles [127]. Typically,
the possibility to manipulate by interactions of the artificial link atom
are considered as an advantage of special flexibility of the link atom ap-
proach [128]. However, to our opinion the price of this flexibility is too
high since it leads to a great uncertainty in the results obtained and thus
marks down possible predictive capacity of the QM/MM approach.

The saturation of dangling bonds by hydrogen is not the only possible
way proposed in the literature. The main reason of using other types of
saturation groups is the intention to reproduce the polarity and other
properties of the broken bond more correctly. The choices (suggestions)
for saturation groups well known in the literature are pseudohalogens
[129, 130] and ”dummy groups” [131]. The important drawback of link
atom method (and, especially of the ”dummy groups” method) is intro-
ducing of additional nuclear degrees of freedom for which no reasonable
equation of motion (or equivalently no energy minimum condition) can
be derived. It requires special link atom corrections. To cope with prob-
lems incurred by introducing link atoms an adjusted connection atom
approach [132] was developed. The connection atom is a QM one but its
interactions with the environment include some classical terms. So, the
bonded interactions of the connection atom with MM atoms are covered
by force field for a carbon atom. It is assumed that the C-C bond is
cut and the connection atom mimics the methyl group. This method
was calibrated against the NDDO calculations for methyl compounds.
It should be noted that this scheme is valid only for equilibrium bond
distances since the molecules used for calibration were taken in their
equilibrium geometries.

The same problems can be addressed by using effective group poten-
tial techniques [51, 52]. For example, in Ref. [52] a special potential
reproduces the interactions between the QM subsystem electrons and
the missing valence electrons of one-electron boundary atom. In the
pseudobond approach [133, 134] the free valence of a QM atom is satu-
rated with a special atom located exactly at the position of the neighbour
MM atom. The basis set and number of electrons of this pseudoatom
are set to be equal to those of fluorine atom. The C-C bond is mim-
icked by a specially adjusted effective core potential. Another approach
based on the use of effective potentials is proposed in Ref. [135]. A se-
ries of one-electron quantum capping potentials replacing the link atom
is formed by modification of conventional effective core potentials: the
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spherical shielding and Pauli terms replace the excess valence electrons.
The capping potential is adjusted to reproduce all-electron geometries
and charge distributions. The analysis of this scheme shows that the
error induced by capping potential is significant (especially for angular
distortions) but generally less than that in the simple link atom scheme.
It is noteworthy that this scheme can be extended to construct many-
electron quantum capping potentials.

The important problem of the link atom schemes is geometry opti-
mization since as it is shown in Ref. [110] the difference between QM
and MM interaction energies for link atom enters into the total energy
and strongly depends on the link atom position since the forms of the
QM and MM force fields are very much different. Practically it leads
to the collapse of the fictitious link atom with the boundary atom. The
characteristic results is that the equilibrium position of the link atom is
badly defined and can not be reasonably rationalized. One of possible
recipes for avoiding the collapse of the link atom is to use for geometry
optimization a potential energy function not coinciding with the total
energy of the molecular system [110]:

Epot = Etotal - Elink- (48)

At the same time such an approach seems quite artificial. Moreover, in
Ref. [136] (cited by Ref. [121]) it is stated that the strong deviation of
the link atom equilibrium position from the line connecting atoms form-
ing covalent bond leads to serious problems. Moreover, the vibrational
spectra calculated by the optimization of the link atom position method
are worse than even the MM-force field derived. Also the QM/MM cal-
culated proton affinity for small gas phase aluminosilicate clusters is very
sensitive to the length of the bond between boundary QM atom and the
hydrogen atom introduced [137]. The problems with positioning of link
atoms are considered by numerous authors. For example, authors of
Ref. [38] proposed a special procedure for geometry optimization with
rigid restrictions on the position of link atom. More complex is the
so-called scaled position link atom method (SPLAM) [121]. It requires
to indroduce bonding, dipole, and van-der-Waals corrections. In some
cases it works significantly better than the simple link atom method but
the status of result is still unclear. Moreover some numerical estimates
performed withuse of the SPLAM in Ref. [121] can not be considered
as successful. We can see the typical failure of the QM/MM schemes
since it gives the results which are quite close to the pure MM ones.
In this case the use of the hybrid QM/MM approach becomes sense-
less. For example, consideration of the water dimer have shown that the
BLYP QM method predicts the OO distance and the HO...H angle (2.98
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Aand 123°, respectively) very close to the experiment (2.98 Aand 122°),
while the MM scheme works significantly worse (2.77 Aand 162°) and
corresponding hybrid scheme gives values almost coinciding with those
of the MM (2.78 Aand 163°). It witnesses the fact that some important
contributions are missed in such approach.

It is seen that the implementation of the link atom method is generally
not a trivial task. The most simple for implementation model closely re-
lated to the link atom method [110] is the so-called ”subtractive scheme”
implemented for example in Refs. [59, 61]. In the framework of these
schemes the dangling bonds of the QM fragment are sauturated by some
groups (hydrogens, methyl groups etc.) and form the so-called model
system. The whole system is calculated by a MM method of choice (or,
more generally, by whatever low-level method, may be a QM one) and
the energy is obtained by adding the QM (high-level) calculated energy
of the model subsystem and subtracting the MM calculated energy of
the model subsystem:

Eiot = Ejgp(real) + Epign(model) — Ejgy(model), (49)

where "high” and ”low” refers to the levels of approximation while ”real”
and "model” — to the type of the calculated system. The above expres-
sion obscures the need for explicit formulation of the properties of the
boundary between subsystems. This scheme has obvious drawbacks. It
takes into account interaction between subsystems only on the classical
level and thus the electrostatic polarization of the QM region by the
MM-treated environment (and vice versa) can not be taken into account
in this approach. Moreover, description of reaction center by molecular
mechanics in many cases can be quite problematic (even for the purpose
of relative error evaluation), for example, due to absence of required
force field parameters (especially, if transition states are considered).
It should be noted that the errors behave irregularly with changes of
the geometry: the MM scheme can perfectly describe the system near
equilibrium and totally fail near the saddle point. Saturation of broken
bonds by hydrogens (or other groups) can essentially affect the results
of electronic structure calculations. Therefore, QM subsystem should
be chosen to be quite large. The validity of the subtractive scheme is
almost explicitly based on more or less accidental compensation of er-
rors. The most simple implementation of this scheme is the IMOMM
methodology [38]. The IMOMO scheme is the analogous procedure of
combining two QM (MO-based) methods. According to Ref. [138] these
approaches combining two subsystems are called two-layered. The sub-
tractive approach combining more than two regions (i.e., including some
intermediate buffers) is called ONIOM [138]. The expression for the total
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energy in the framework of the ONIOM scheme is written analogously
to that of Eq. (49) and in the case of three-level model is:

Etot = Ejow(real) + Epign(S — model) — Epyeq(S — model)+

+Epeq(I — model) — Ejg (I — model), (50)

where "med” corresponds to the medium level of approximation, while
S-model and I-model correspond to the small and intermediate model
systems, respectively. While using the ONIOM scheme it is explicitly
prescribed by its authors [138] to estimate the energy difference incurred
by transition from a model molecule to a more realistic one and to use
that pair of methods as high-/low-level ones for which these differences
are close enough. This procedure is of course nothing else but a check
whether the errors are likely to compensate. It should be noted that the
authors of Ref. [139] made the QM/MM boundary in their implemen-
tation of the IMOMM method for surfaces more flexible to smooth the
consequences of the molecule partitioning.

The main features of the "subtractive” hybrid schemes can be il-
lustrated by numerical examples. To understand better the problems
caused by the ad hoc way of junction construction we consider charac-
teristic examples where these schemes fail. In the most cases the sources
of failures can be seen on the simple molecular objects which serve as
tests for one or another hybrid scheme. As an example we consider an
application of the IMOMM method to conformational properties of cis-
butane performed in Ref. [113]. It was shown that marking two C end
atoms of the molecule as QM ones leads to valence angles 129.9°, while
pure QM calculation gives 117° and pure MM calculation predicts the
value 116.1° for these angles. Therefore, we see the case when transition
to QM/MM procedure spoils even the results of pure MM calculations.
Problems also arise when multilayered schemes are used. For example,
the energy of reaction of the oxidative addition of Ha to Pt(P(t-Bu)s)s
calculated by the B3LYP:HF:MM3 scheme is 7.9 kcal/mol smaller than
that calculated by the B3LYP:HF:HF scheme [138]. The same differ-
ence in 7.9 kcal/mol is obtained for schemes B3LYP:B3LYP:MM3 and
B3LYP:B3LYP:HF. Therefore, the choice of the description for the third
layer (the most inert subsystem) turns out to be crucial for the descrip-
tion of the energy of this reaction which is estimated to be ~4 kcal/mol
[138]. It speaks on the incorrect construction of junction in this scheme.

Principally different and more justified type of construction of junc-
tion between QM and MM parts of the molecule is based on the use of
local one-electron functions. Only this type junctions cutting the nuclei
and not the bonds can be justified from the general point of view. In the
local self-consistent field (LSCF) approach [41, 107, 140, 141] the chemi-
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cal bonds between QM and MM regions are represented by SLBOs. The
BOs can be obtained by whatever of a posteriori localization procedures
known in the literature. At the same time the localized orbitals ob-
tained in the localization procedures have some degree of delocalization,
i.e. they have non-zero contributions for the atoms not constituting a
given bond (or a lone pair) mimicked by this particular BO. These con-
tributions are called the ”tails” of the localized orbitals and their neglect
lead to the SLBOs which are used in the LSCF scheme. An important
assumption made in the LSCF construction is that of the transferability
of the SLBOs in very wide ranges. The QM part of the system is de-
scribed by a set of delocalized MOs while the boundary is modeled by the
frozen SLBOs. The frozen character of the boundary SLBO may cause
the sensitivity of the LSCF results to the size of the QM region. The de-
termination of the electronic structure of the QM region is based on the
diagonalization of the modified Fock operator which includes Coulomb
and exchange interaction with boundary orbitals and interaction with
the MM charges. In its original implementation the LSCF method was
developed by fixing the positions of the atoms of the environment and
thus it was not suitable for geometry optimization procedures. This re-
striction was avoided in Ref. [142] by special adjustment of the force
field parameters. The authors of Ref. [142] have noticed that in the
framework of original LSCF scheme the ion-nuclei interactions are un-
derestimated and the variation of the overlap between boundary basis
functions with respect to the boundary bond length is not taken into
account. To cure these problems they defined a 5-components boundary
bond potential

E
Ex_y = (A+ Br+Cr?)eP" + = (51)

where the first contribution describes an overlap and the second con-
tribution describes an interaction of effective charges with parameters
A-FE numerically optimized. In fact, the first contribution should corre-
spond to the intrabond resonance and one has to consider the potential
Eq. (51) mainly as a correction for the bonding (the overlap dependent
contribution). At the same time the particular values of the parameters
A-FE seem not to correspond to their declared physical meaning. The
same conclusion can be drawn from the energy profile for the process
of the boundary bond elongation — for large values of bond length the
difference between LSCF and SCF curves drastically increases since the
unphysically large Coulomb contribution becomes prevailing. Moreover,
optimized bond lengths in the SCF and the LSCF /MM approaches can
differ significantly and also remarkably depend on the environment the
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bond is assigned to (for example, C(QM)-N(MM) bond is by 0.024 A
longer than the bond N(QM)-C(MM) with the same hybridization). The
problems with the correction of bond description by the potential Eq.
(51) are caused by the number and type of factors it is designed to re-
produce — character of boundary orbitals is a function of geometry (see
Egs. (31) and (33)), elements of intrabond density matrices (especially,
of the two-electron ones) also depend on the geometry (see Egs. (20)
and (21)) as important examples. Moreover, the form of the bond en-
ergy is not arbitrary and can be defined from the analysis of particular
QM expression (see Eq. (17)). The angular dependence of the bond po-
tential was not considered is totally neglected in the potential Eq. (51),
while it naturally appears in the subsequent derivation of intersubsys-
tem junction due to angular dependence of resonance interactions. It
should be stated that the LSCF approach has two important drawbacks
by construction: the procedure of separation of the system in parts is
not flexible and not justified; the parameters for the SLBOs should be
determined from model molecules for each new system. Construction
of extensive database of SLBO parameters is considered as a strategy
within this approach.

It is interesting to compare the possibilities and errors of different
hybrid QM/MM schemes. The careful examination and comparison of
link atom and LSCF techniques was performed in Ref. [128] using the
CHARMM force field [114] and the AM1 method [143] as a quantum
chemical procedure. In the case of the link atom procedure two options
were used: QQ — the link atom does not interact with the MM subsystem
and HQ — link atom interacts with all MM atoms. The main conclu-
sion of this consideration is that the LSCF and the link atom schemes
are of similar quality. The error in the proton affinity determination in-
duced by these schemes is several kcal/mol. It is noteworthy that all the
schemes work rather badly in description of conformational properties
of n-butane. The large charge on the MM atoms in the proximity of
the QM subsystem (especially on the boundary atom) cause significant
errors in the proton affinity estimates for all methods (especially, in the
case of the LSCF approach where the error can be of tens of kcal/mol).
This is not surprising since the stability and transferability of intrabond
one- and two-electron density matrix elements Eq. (19) is broken here.
It proves that the simple electrostatic model is not well appropriate for
these schemes and that a detailed analysis of the junction form is nec-
essary in general case. Moreover, the numerical analysis shows that the
error induced by the HQ model is less than that induced by the QQ
model. Since the HQ model explicitly includes unphysical interactions
with artificial link atom it means that these interactions partly compen-
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sate errors in junction construction. Practically, the link atom interacts
with the MM atoms even in the case of the QQ model but indirectly via
the interactions of QM subsystem with the MM atoms. In the case of
the QQ model non-compensated charge on the QM subsystem (without
link atom) interacts with MM atomic charges. It causes significant po-
larization of the QM subsystem. It is confirmed by numerical estimates
of charges on the QM subsystem [128].

An attempt to escape the need of constructing large databases in the
LSCF approach was made by Gao et al in the generalized hybrid orbital
(GHO) method [144, 145]. This approach is intended to interpolate the
ESPs related to the shape and orientation of the HOs residing on the
frontier atoms. The first step in the GHO method is dividing the hy-
brid orbitals into active and auxiliary ones — the first ones are added to
the QM subsystem. In the original LSCF approach three orbitals of the
boundary atom are included into the self-consistent procedure. In the
GHO approach only one active orbital of the boundary atom participates
in the set of orbitals subjected to the SCF procedure while the auxiliary
orbitals mimic the effective core potential. Therefore, we can character-
ize the boundary atom in the GHO scheme as the MM one while the
boundary atom in the LSCF scheme is the QM one. It allows to sub-
stitute the parameterization of the one-electron density on the HO for
each molecule by choosing semiempirical parameters for boundary atom
with assumption of their transferability. At the same time the possi-
bility to choose reasonable and transferable semiempirical parameters
for boundary atom must rely upon correct determination of the HOs.
Conversely, the GHO scheme uses very crude assumptions [145] about
the form and the direction of HOs based on the pure geometry con-
siderations which are equivalent to assumptions of (i) Cs, symmetry of
the local MM environment and (ii) coincidence of all the HOs directions
with the directions of bonds. Practically, these conditions are satisfied
only for methane molecule. Moreover, even for these assumptions the
s-/p-ratio for active orbital is determined by incorrect formula working
only for equivalent active and auxiliary orbitals or for purely p active
orbital. The real structure of the HOs as a function of the geometry
is given by the expressions of the previous Section and we note that
neither of the assumptions accepted in Ref. [145] is fulfilled. Neither
asymmetry of the geometry of the boundary atom environment nor the
chemical nature of neighbouring groups are taken into account in Ref.
[145]. In practical implementation of Refs. [144, 145] all the HOs are
determined by directions of the bonds between the boundary atom and
its three MM neighbours. The coincidence of HOs and bond directions is
a rather crude and uncontrollable assumption. In the case of molecules
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with large asymmetry or significant geometry constraints the difference
between directions of bonds and HOs can exceed 20° with cyclopropane
as the most characteristic example. Since the s-/p- ratio and direction
of the active HO in the GHO method are totally the functions of only
MM atoms positions the form of this HO may be far from being optimal
to say nothing of its behaviour with geometry variations. In our opinion
the non-variational form of the HOs has led the authors of Ref. [144]
to significant and hardly justifiable renormalization of the Hamiltonian
parameters and the MM force field to reproduce correct bond lengths,
direction of auxiliary orbitals along the corresponding bonds, and the
Mulliken charges on the atoms, so, that the boundary could not be con-
sidered as a weak perturbation anymore. For example, in the case of
carbon atom the resonance parameter s should be changed by more
than 10 eV; the MM C-C ideal bond length parameter rq should be
changed by 0.05 A. It should be noted that the change of the delocalized
description of electronic structure to the localized one does not lead to
significant changes in the parameters of the semiempirical Hamiltonian
as it was exemplified on the examples of MINDO/3 [26], MNDO, AM1,
and PM3 [27] schemes.

The principles similar to those of the LSCF are used for junction con-
struction in Ref. [146] based on the fragment SCF method. Another
model thoroughly elaborated to consider effect of motions of environ-
ment atoms on the ab initio level is that by Philipp and Friesner [147].
In the framework of this model the procedure of frozing the SLBO was
refined and the degree of delocalization of SLLBOs is extended from two
boundary atoms to two boundary groups. At the same time an attempt
to obtain numerical results of good quality has led authors to introduc-
ing some very artificial procedures in the construction of the junction
like placement of very large charges on the bond. Moreover, this model
requires extensive parameterization. To reproduce energetics of alanine
dipeptide and tetrapeptide 27 parameters describing interface between
subsystems were adjusted. Essential parameterization process is quite
important problem of this model. It would be fair to say that reproduc-
tion of conformational energies for a polar system like polypeptide is a
difficult test for any computational methodology. The authors of Ref.
[147] give the essential requirements for the bond at which molecule is
cut: (i) this bond should not have significant multiple bonding character,
and (ii) this bond should be far away from the region where significant
electron re-distribution occurs. The first requirement seems to be quite
reasonable for description of bond by single localized orbital, while the
second one reflects a lack of some contributions to the energy which
are important for small QM subsystems chosen. The estimate of these
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contributions is not possible due to ad hoc way of construction of inter-
subsystem junction.

The method based on the effective fragment potential (EFP) construc-
tion implemented in Ref. [54] is close to the general LSCF methodology.
In this case the boundary is modeled by a buffer region consisting of
several localized molecular orbitals which are obtained by a QM calcu-
lation on all or a subset of the system. These orbitals are set frozen
in the EFP calculation. The orbitals of the QM part are forced to be
orthogonal to those of the buffer region and the environment is repre-
sented by an EFP. The important idea of this approach is to make the
distance between the QM and EFP regions significant with the purpose
to present the corresponding intersubsystem interactions as nonbonded
ones. At the same time the frozen character of the buffer one-electron
states can be important since the changes in polarization contributions
from the buffer region are neglected during a geometry optimization.
The numerical example given by authors of Ref. [54] is quite character-
istic. They calculated the proton affinities of lysine and H-bonded and
non-H-bonded tripeptide Gly-Lys-Gly by the QM /buffer/EFP method.
If the buffer region is chosen as - and §-CHs groups of lysine chain (i.e.,
quite far from the reaction center) the QM /buffer/EFP calculation gives
the value of the proton affinity 2.2 kcal/mol higher than the reference
QM one for all these molecules. It unequivocally testifies that these 2.2
kcal/mol constitute the error of junction construction in this case which
seems to be quite large. Moreover, the difference between QM /buffer and
QM /buffer/EFP results for proton affinities of lysine and non-H-bonded
tripeptide Gly-Lys-Gly is only 0.2 kcal, i.e. the effect of environment
described by the EFP is by an order of magnitude smaller than the error
produced by the junction.

4. Conclusion

The hybrid QM/MM modeling is quite promising for study of large
molecules especially in the rapidly growing field of computational bio-
logical chemistry. The case of covalent linkage between the QM and MM
parts is especially important since it includes the enzymatic catalysis.
At the same time this case is the most complex one since the boundary
between subsystems is not well defined and construction of intersubsys-
tem junction is not straightforward. In this case many ad hoc recipes are
proposed in the literature. We have shown the state-of-the-art in this
field in somewhat critical manner with special attention to the problems
arising during the QM/MM modeling. At the same time the sequential
derivations of QM /MM junctions are shown to be possible. We have
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given a series of physical principles which in our opinion should govern
the construction of hybrid QM /MM schemes. As particular implemen-
tations of these principles we have demonstrated how the effective elec-
tronic Hamiltonian approach can be applied to the purpose of junction
construction. It has required the use of quantum chemical description
underlying the MM one. The APSLG-type trial wave function was taken
for this description.

It should be noted that the important question of structure of bound-
ary one-electron states (especially as a function of molecular geometry)
remained unclear. We proposed a way of determination of these states
based on the derivation of the MM description from the QM (APSLG)
one. The derivation of the deductive MM allows to determine the effects
of the MM subsystem on the QM one (renormalization of parameters)
and of the QM subsystem on the MM one (torques and forces acting on
the MM atoms). Explicit expressions are given for example of boundary
sp® carbon atom. Numerical estimates obtained for different QM /MM
schemes illustrate the general points stressed in the text.
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