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ABSTRACT: Molecules of coordination compounds (those formed by a central
atom—largely by a transition or non-transition metal ion, but also by non-transition
elements like sulfur, phosphorus, etc., and by atoms or groups surrounding it—the
ligands) for decades represent a significant problem for any “classical” description
given in terms of empirical force fields of molecular mechanics (MM) due to diversity
of coordination polyhedra resulting in the numerosity of the parameters necessary to
describe the objects of interest within such a setting. This situation is further toughened
by the specific collection of effects known as mutual influence of ligands, of which the
trans-effect in transition metal complexes is the most known. A feature particularly
complicating understanding the ligand influence is its qualitative dependence on the
nature of the central atom. The real source of these problems is of course the specificity
of the electronic structure of the coordination compounds. If compared with usual
organic molecules for which the MM in its classical form is rather successful the major
distinction characteristic for coordination compounds is the absence of fairly
distinguishable two-center two-electron bonds incident to its central atom (ion). Using a
methodology called deductive molecular mechanics (DMM) we have recently shown
that for “organic” molecules it is possible to sequentially derive the form of the MM
force field departing from a simple but intuitively transparent model of electronic
structure of a single chemical bond. Here we present an analogous derivation for the
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force fields describing coordination compounds. It is based on the analysis of electronic
structure of the closest ligand shell of coordination compounds and on that of its
relation with the geometry changes induced by chemical substitution (ligand influence)
performed recently by Levin and Dyachkov. By using the elements of the one-electron
density matrix as an economical set of electronic structure variables for the closest
ligand shell, the DMM model of coordination compounds is constructed. Next, by
excluding the electronic structure variables the effective elastic elements describing the
force fields concordant with the mutual ligands’ influence in coordination compounds
are constructed and their dependence on the state of the central ion is established.
© 2007 Wiley Periodicals, Inc. Int J Quantum Chem 107: 2519–2538, 2007
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Introduction

C onstructing a mechanistic model for potential
energy surfaces (PES) of coordination com-

pounds, which would be consistent with the ligand
influence effects in this class of molecules, for de-
cades, remains actual for the respective area of com-
putational chemistry [1]. Modern progress in quan-
tum chemistry allows to make reliable predictions
for the PES of polyatomic molecular systems in-
cluding coordination compounds on the basis of
direct calculations of their electronic structure.
However, high-level methods, like ab initio and
DFT, are computationally too demanding when
dealing with coordination compounds and inciden-
tally do not provide any theoretical insight into
physical reasons controlling the observable (and
hopefully numerically reproducible) behavior of
these species. On the other hand, qualitative con-
cepts, such as points-on-a-sphere (POS) [2] or met-
al–ligand size-match selectivity [3], playing impor-
tant roles in theoretical coordination chemistry of
both transition and non-transition metals, miss any
reliable semi-quantitative structure–energy rela-
tion. Thus, effective numerical tools suitable for
semi-empirical modeling of coordination com-
pounds and reproducing the qualitative aspects of
their stereochemistry (including ligand influence)
are strongly in demand. Recent studies reviewed in
[4] are devoted to analysis of chemical bonding in
various coordination compounds. They are, how-
ever, mainly focused on truly covalent compounds
with more or less well-distinguishable two-center
bonds. By virtue of this the electronic structure of
compounds considered in [4] differs on an intuitive
level from the picture of unsaturable and undi-
rected “coordination” bonds characteristic for com-

plexes of metals with organic ligands with donor
atoms [5]. Here we assume to consider namely this
latter class of compounds from the point of view of
possibility of constructing a mechanistic model of
their PESs based on a sequential quantum model of
electronic structure of their closest coordination
spheres. Before plunging into this we explain what
has to be expected from the theory to be con-
structed here.

It is known from the literature [6] that in coor-
dination compounds due to mutual ligand influ-
ence effects the MM parameters involving the cen-
tral atom (ion) are that numerous that any
mechanistic description of them with an acceptable
result makes the entire enterprise eventually sense-
less. There would be no chance to get any insight to
this diversity from the scratch. Fortunately, A. A.
Levin and P. N. Dyachkov being based in the I. B.
Bersuker theory of vibronic interactions [7] yet in
1980s performed an exhaustive qualitative analysis
of the interplay between chemical substitutions and
deformations of the complex geometry, i.e. of the
ligand influence in those of both transition and
non-transition elements [8] for the most widespread
coordination polyhedra: octahedron, tetrahedron,
and planar square. By this they established basic
relations between the characteristics of electronic
structure of coordination compounds and their ge-
ometry. Analysis performed in [8] reduces to qual-
itative reasoning on the properties of the solutions
of the MO LCAO method in the restricted basis of
functions. Formally it is a special case of applying
the M. J. S. Dewar’s theory of perturbations of
MOs [9] to the special class of the MOs residing in
the closest ligand shell (CLS) of a coordination
compound. Our purpose in the present paper is
to develop such a formal representation to the
results of [8], which could be recast into a mech-
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anistic view upon the PES of coordination com-
pounds in terms of classically looking force fields
derived from the quantum mechanical picture of
molecular electronic structure. By this we theo-
retically derive an MM-like description covering
coordination compounds and give an explanation
and introduce systematization into diversity of
their parameters.

Ligand Influence From MM
Perspective

In the standard MM [10] setting the substitution
effects upon molecular geometry (ligand influence)
can be only awkwardly described. The PES in the
MM setting is the sum

E � Eb � Eang � Etors � Enb, (1)

of the bond stretching (Eb), valence angle bending
(Eang), torsional (Etors), and nonbonding (Enb) con-
tributions (force fields), which are all explicit func-
tions of nuclear coordinates. The nonbonding force
field is mainly contributed by the Coulomb interac-
tions of some effective charges and by the van der
Waals forces:

Enb � ECoul � EvdW.

The equilibrium nuclear coordinates qeq coming
from the MM approximation are defined by the
equilibrium conditions, which can be conveniently
reformulated as those of the evanescence of the
forces acting on the atoms (in the MM context using
this form of the equilibrium condition dating back
to Sir Isaac Newton himself was suggested in Ref.
[11]). In the standard MM setting the equilibrium
interatomic distances are close to some ideal values
q0 (which are part of the parameters’ sets describing
respective force field) specific for the bonds of each
considered type. In the vicinity of these ideal values
the energy can be safely assumed (and it is fre-
quently but not always done in the MM setting) to
be quadratic in the nuclear coordinate shifts so that
the actual values of the equilibrium interatomic
distances (and of other geometry parameters) ap-
pear as a result of the response of the system to the
presumably small forces coming from the nonbond-
ing part of the molecular force field:

qeq � q0 � D�1f�q0� where

f(q0)���q(Etors � ECoul � EvdW)�q�q0 (2)

where by �q we understand the first derivative
(gradient) with respect to all the nuclear coordi-
nates and D�1 is the inverse of the dynamic matrix
(that of the second derivatives of the energy) de-
rived from the harmonic bonding contribution
(bond stretching and valence angle bending) to the
MM energy only. This approximation to the MM
energy yields the diagonal dynamical matrix if the
coordinates are taken as the bond lengths’ and va-
lence angles’ shifts, so that D�1 is also diagonal and
can be easily calculated. Later we shall restrict our-
selves to a model of octahedral complex where no
quadruplet of atoms sequentially connected by
bonds appears. That means that no proper torsion
terms Etors actually appear in the expression for the
energy Eq. (1). For that reason we do not consider
them hereinafter. Under these conditions whatever
coupling between the individual bond stretching
and valence angle bending modes is only possible
through the mediation of the nonbonding force
fields unless it is introduced into the model explic-
itly. We are not going to insert these missing cou-
plings “by hand” rather to derive them sequen-
tially. Hence we first explore what the nonbonding
force fields can give in this respect.

COULOMB CONTRIBUTION TO LIGAND
INFLUENCE

Let us explore the possibility to ascribe the ligand
influence to the nonbonding part of the classical
force field starting from the leading Coulomb con-
tribution to the energy. In the octahedral complex
ML6 a single substitution ML6 3 ML5X manifests
itself in changing the ideal bond length of one of the
MOL bonds to that of the MOX bond. Under the
formulated conditions this does not affect directly
the lengths of other MOL bonds (the off-diagonal
terms are absent), but changes the potentials of the
force fields felt by other atoms L. Let us assume for
the sake of definiteness that the replaced ligand
occupies the apical position, i.e., takes a positive
value of its z-coordinate in the coordinate frame
centered at the M atom with the axes directed along
the MOL bonds. Next, we can set the ideal value of
the MOX bond rMX to differ from that for the MOL
bonds rML by the quantity �rXL:
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rMX � rML � �rXL,

and assume that the ideal position of the X substitu-
ent does not deviate from the z-axis. We also as-
sume that the effective charge of the X substituent
differs from that of the ligand L by an amount �QXL.
This value is not, however, absolutely independent
since we assume that the effective charge of the
central atom under the substitution changes by the
same quantity �QXL in the opposite sense. Under
these assumptions one can write the variation of the
electrostatic potential caused by the substitution in
the point r of the three-dimensional space, which is
enough distant from the substituent X. Retaining
the terms of the first order with respect to either
�rXL or �QXL we get:

��Coul�r� � �QXL� 1
�r � RL��

1
�r � RM��
� QL

(r � RL,�RXL)
�r � RL�3 . (3)

The vectors involved in the above formula refer to
the complex geometry and its variation:

RM � (0,0,0) RL � (0,0,rML) �RXL � (0,0,�rXL).

(4)

Applying the standard formulae of electrostatics
we can write the extra field exerted at the point r
due to the above potential variation Eq. (3):

�ECoul�r� � � ���Coul�r�

� � �QXL� r � RL

�r � RL�3 �
r � RM

�r � RM�3� � QL

�RXL

�r � RL�3

� QL

�r � RL, �RXL)(r � RL)
�r � RL�5 . (5)

The ideal position for the trans-ligand L is:

r � RL
trans � �0,0, � rML) (6)

and the electrostatic force additional to that it had
to experience in the ML6 complex reads:

�fCoul�RL
trans� �

1
4

QL
2

rML
2 ��rXL

rML
� 3

�QXL

QL
�(0,0,1). (7)

Then according to approximation given by Eq. (1)
one can conclude that since the force felt by the
trans-ligand in the substituted molecule differs by
�fCoul (RL

trans ) the coordinate of the trans-ligand
differs by the same force divided by the elasticity
constant characteristic for the nuclear shift along
the given direction. Incidentally the required elas-
ticity constant equals to the elasticity constant for
the ML bond stretching in the classical MM force
field, so that:

�RL
trans �

�fCoul�RL
trans�

KML
.

This result can be qualitatively understood as fol-
lows: two factors contribute to the trans-influence.
First is the charge redistribution. Indeed, if for the
substituent ligand X the effective charge decreases
by its absolute value (the negative QL becomes less
negative, i.e., �QXL � 0) this results in an effective
attractive force. However, if for the substituent li-
gand X its effective charge increases by absolute
value as compared to that of the ligand L (the
negative QL becomes more negative, i.e., �QXL � 0)
this contributes an effective repulsive force acting
on the trans-ligand. Nevertheless, due to the as-
sumption that the charge brought to the substituent
X is taken from the central atom M the latter ac-
quires additional charge ��QXL, which is located
much closer to the trans-ligand than the substituent
and produces a stronger force. The overall effect of
the charge redistribution is opposite to that exerted
by the charge transferred to the substituent and it is
the trans-ML bond contraction for the more nega-
tive substituent ligand X and the trans-ML bond
elongation for the less negative substituent ligand
X. Even this already rather complicated picture can
significantly change since the net effect depends
also on the geometry shift of the substituent ligand
X relative to the ideal position of the ligand L. If
�rXL � 0 (the substituent is further away from the
central atom) the repulsion of the trans-ligand from
the substituent decreases, which results in an effec-
tive attraction force acting on the trans-ligand and
by this reducing the ML bond length. The overall
trans-influence in the Coulomb approximation is
controlled by the quantity

�rXL

rML
� 3

�QXL

QL
.
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If it is positive the substitution results in an effec-
tive attraction of the trans-ligand (and thus in the
shortening of the bond in the trans-position to the
substituent) and vice versa.

The situation with the ligands in the cis-position
to the substituent is even more complicated. Taking
for the sake of definiteness the cis-ligand at

r � RL
cis � �rML, 0, 0� (8)

which is one of the four equivalent positions we see
that the additional electrostatic force acting on it is:

�fCoul�RL
cis�

�
1

2�2

QL
2

rML
2 ��rXL

rML
��3

2 , 0,
1
2��

�QXL

QL
(1�2�2, 0, 1)�

which (depending on the relation between �rXL/
rML and �QXL/QL) may result either in approach
of the cis-ligand to the central atom of the complex
or in its going further from the latter. The elonga-
tion of the apical bond (�rXL � 0) always tends to
shorten the bond in the cis-position to it. On the
other hand, the substitution by a less electronega-
tive substituent (�QXL � 0) results in an effective
repulsion of the cis-ligand (lengthening of the bond
in the cis-position to the substituent). But this effect
is expected to be somewhat less pronounced than
the bond-length variation for the trans-ligand:

��fCoul�RL
cis��

��fCoul�RL
trans�� �

4
3

2�2 � 1

2�2
� 0.86 � 1

although the difference should not be very signifi-
cant (only 15%). In all cases (which are expectable)
there is a component of the force acting along the
shift direction of the substituent X.

VAN DER WAALS CONTRIBUTION TO
LIGAND INFLUENCE

Although one may think that on the scale of the
Coulomb interactions the effect of other (van der
Waals) nonbonding interactions may be neglected
we notice that in the present context it goes not
about the absolute magnitude of the forces exerted
by different nonbonding components of the classi-
cal force fields upon the idealized structure of the
complex but about the variations of the forces ex-
erted by these fields. With this precaution in mind

we address the effect of monosubstitution upon the
forces exerted by the substituent within the sim-
plest possible model of the van der Waals force
field—the Lennard–Jones [6–12] potential. In this
approximation the contribution to the potential en-
ergy of the vdW interaction of a particle L at the
point r with the particle at RX has the form:

VLX�r� � �LX� ỹ2 � 2ỹ�

where

ỹ � � dLX

�r � RX��
6

In this notation the minimum of the LJ potential
curve corresponds to ỹ � 1. Using the Berthelot
combination rules we get for the substituted case:

�XL � ��LL�XX � ��LL��LL � ��XL� � �LL�1 �
1
2

��XL

�LL
�

(9)

dXL �
1
2 �dLL � dXX� � dLL �

1
2 �dXL.

Inserting the linear approximation for the distance
between the point r and the position of the substitu-
ent RX like in the case of the Coulomb interaction:

�r � RX[b]� � �r � RL � �RXL�

� �r � RX� � 2�r � RL, �RXL) (10)

and performing somewhat long but simple algebra
we arrive to an estimate of the substitution stipu-
lated variation of the potential energy of particle L
located in the point r:

�VvdW�r� �
1
2 ��XL�y2 � 2y�

� 12�LL��dXL

dLL
�

�r � RL,�RXL�

�r � RL�2 ��y2 � y� (11)

where

y � � dLL

�r � RL��
6

.

The additional forces have the form:
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�fvdW(r) � � ��VvdW(r) � � ��XL�y � 1��y �

� 12�LL�y2 � y��
�r � RL, �RXL�

�r � RL�2 �

� 12�LL��dXL

dLL
�

�r � RL, �RXL�

�r � RL�2 ��2y � 1��y. (12)

Performing necessary algebra yields rather cumber-
some formulae (not given here) which, however,
allow for the qualitative understanding. Like in the
case of the Coulomb interaction the additional
forces in the case of the van der Waals interaction
appear from two sources—the variation of the pa-
rameters of the Lennard–Jones (LJ) potential and
the variation of the idealized geometry. In the ac-
cepted first order approximation these two sources
contribute independently. The variations of the po-
tential parameters (��XL and �dXL) are even more
uncertain than the values of �LL and dLL themselves.
If one neglects their contribution the result can be
understood from the analysis of the LJ potential
curve. For the trans-ligand two situations are think-
able: one is that the ideal LOL separation (equal to
2rML) falls onto the repulsive segment of the LJ
curve (dLL/2rML � 1). Then, getting the MOX bond
longer than the MOL bond results in abstraction of
the repulsive wall from the trans L ligand, which
manifests itself in the effective attraction and in the
shortening of the trans-bond. However, if the trans-
ligand appears on the attractive segment of the LJ
curve (dLL/2rML � 1) the situation is not that sim-
ple. For shorter distances (closer to the potential
minimum) the restoring force (the first derivative of
the potential) increases when the interatomic sepa-
ration increases. In this case getting the MOX bond
longer than the MOL bond results in the increase of
the restoring force and thus to an effective extra
attraction of the trans L ligand. This has to result in
a shortening of the trans MOL bond as well. On the
other hand, the restoring force on the attractive
segment passes through its maximum since at
larger distances it decreases and completely van-
ishes at the infinite separation. The larger and
shorter distance ranges on the attractive segment of
the LJ potential are separated by the value:

y* �
7

13.

If y � y* the elongation of the MOX bond as com-
pared to the MOL bond results in the decrease of

the restoring force and thus to an effective extra
repulsion of the trans L ligand.

The situation with the cis-ligands is even more
complicated. Performing a shift of the X ligand as
compared to the original position of the L ligand
produces additional force acting on the cis-ligand,
which has two components: one directed along the
x-axis of the complex coordinate frame, and that
directed along the z-axis. Both of these contribu-
tions may be either of attractive or repulsive char-
acter, i.e., the x-component of the force may be
directed either to the central atom or out of it,
whereas the z-component of the force may be point-
ing to the same direction as the shift of the X ligand
relative to the ideal position of the L ligand. The
actual direction of the extra force depends on the
precise position of the cis-ligand relative to the
substituted one. For example, for the more distant X
ligand, the y-component of the force is directed
away from the central atom for y � y* � 4/7 and
toward it for shorter distances meaning larger val-
ues of the variable y. On the other hand the z-
component of the force is directed opposite to the
shift direction of the X ligand for y � y** � 1/2.

LIGAND INFLUENCE AS DERIVED FROM
NONBONDING FORCE FIELDS VS.
EXPERIMENT

From the above treatment one can derive two con-
clusions: (1) The diversity of the types of behavior
which in principle can be ascribed to different non-
bonding force fields is impressive. By assigning
these or those values to the parameters character-
izing the force field variation under substitution
one can reproduce eventually all thinkable modes
of mutual influence of the ligands in the coordina-
tion sphere. (2) The parameters’ values possibly
needed to reproduce the observed behavior cannot
be systematized and their values will probably re-
main the result of a play of uncontrollable factors.
This reduces the validity of the entire picture since
certain type of systematization is possible in chem-
ical terms (see later). Here we are going to discuss
it briefly relying basically upon the review given in
Ref. [8], which will be compared with the above
theoretical sketches.

The ligand influence in coordination compounds
of nonmetals in higher and lower oxidation states
differs significantly both in magnitudes and signs
of the effects. An instructive example is provided
by the substitution in the perhalogenated com-

TCHOUGRÉEFF
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plexes which can be described as L6M 3 L5XM
where the role of L is taken by a halogen anion, X
stands for a ligand less electronegative than the
halogen L, and M stands for a nontransition ele-
ment like J, S, P, Sn, etc., in a higher oxidation state.
In some cases the substitution does not cause any
difference between the cis- and trans-bond-lengths
or only a marginal one (compounds of S(VI)). How-
ever, in other cases the substitution results in re-
markable deformations of the coordination octahe-
dron (compounds of J(VII)). In the latter case the
cis-J-F bonds are significantly shorter than the J-F
bond in the trans-position to the presumably less
negatively charged oxygen substituent. This situa-
tion can be characterized by some values �QXL � 0,
QL � 0, and �rXL � 0, so that the entire picture
qualitatively fairly agrees with the Coulomb model
of trans-effect described in the section Coulomb
Contribution to Ligand Influence. Turning to the
beginning of the Periodic row one can see that
namely the bond in the trans-position to the sub-
stituent turns out to be significantly shorter than
those in the cis-positions for the complexes of P(V),
As(V), Sn(IV), Pb(IV), Ga(III). Although in all these
cases one could expect a significant contribution of
the charge redistribution effect upon the complex
geometry through the mediation of the Coulomb
forces, the picture is inverted as compared to the
predictions based on the Coulomb contributions to
the MM energy (and to the case of J(VII) com-
plexes). Remarkably enough that this contradiction
most probably cannot be cured by referring to the
bond length variations �rXL, which are mostly neg-
ative since one can expect that the XM bonds in the
examples reviewed in Ref. [8] are shorter than the
LM ones.

On the other hand, in the case of complexes with
nonmetallic central atom of a lower oxidation de-
gree the electropositive substitution (in complexes
of Te(IV) and Se(IV)) results in a significant increase
of the bond-length in the trans-position to the sub-
stitution as compared to the lengths of the cis-
bonds. Similar picture is observed in the coordina-
tion compounds of transition metals. So we see that
the diversity of the observed types of behavior is
too large to try to squeeze the available experimen-
tal data to the picture relying upon the Coulomb
forces acting between the effective charges of re-
stricted mobility. Doing so one drives in the situa-
tion when the demands to the relative magnitudes
of the charges’ and ideal bond-lengths’ variations
(�rXL/rML and �QXL/QL) become very difficult to

satisfy. Much more important is that the quantities
�QXL playing a key role in the picture of the ligand
influence based on the Coulomb forces as the bare
charges QL themselves must be found from some
kind of quantum chemically based procedure since
otherwise one cannot guarantee the correct behav-
ior of them. At the same time any attempt to reload
the specific behavior observed in different com-
plexes upon the parameters of the LJ potentials
brings up a necessity to assume the dependence of
these parameters on the nature of the “third”-cen-
tral atom, which is clearly not desirable. One can try
to get around these problems by ascribing the val-
ues of different signs to the off-diagonal stretching–
stretching constants when it goes about the cis- and
trans-bonds. The signs of these constants may be
made different depending on the nature (and the
oxidation state) of the central atom. Thus the nec-
essary values will have to be assigned on the basis
of more and more refined system of atomic types as
it is done in the “classical” MM, but this brings back
the problem of enormous growth of the number of
necessary parameters and of setting physically
sound limits to their values. Our purpose in the
present paper is ultimately to sequentially derive
the expression for the required off-diagonal terms
and to obtain estimates for their values. This will be
done in further sections on the basis of analysis of
interrelations between the perturbations of the elec-
tronic structure of the coordination compound and
its geometry, having the theory of the ligand influ-
ence by Levin and Dyachkov (which successfully
described the cases reviewed above) as a bench-
mark to be reached by the scheme under construc-
tion.

Account of Deductive Molecular
Mechanics

GENERAL SETTING

The methodology designed for deriving mechanis-
tic picture of PES from one based on a suitable
quantum description of molecular electronic struc-
ture has been proposed in Ref. [12] under the name
of deductive molecular mechanics (DMM). It has
been applied in Refs. [13–15] to the “organic” mol-
ecules—the main object of the classical MM with a
considerable success. The result of these works
summarized in Ref. [16] is that a sequential deriva-
tion of whatever mechanistic model of PES for each
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specific class of molecules consists of the following
steps:

▪ Groups of electrons responsible for the ob-
served features of molecular energy and ge-
ometry to be reproduced in the target MM
model must be identified.

▪ Approximate methods sufficient for descrip-
tion of the responsible electron groups and
reproducing the necessary features must be
identified and formalized in the structure of
the trial wave function for the target class of
molecules.

▪ The electronic structure variables (ESVs) de-
scribing the relevant electron groups in the
sufficient approximations must be identified.

▪ In terms of these sets of ESVs one constructs
an intermediate (DMM) model of the PES.

▪ The intermediate ESVs can be excluded, for
example, using a linear response theory in
order to get the target MM model of PES.

For the molecules of interest in the present pa-
per—the complexes of nontransition elements the
results first three stages can be extracted by analyz-
ing some previous works. As we mentioned previ-
ously the LD theory serves as a benchmark here
since it allows to establish and by comparison with
experiment to verify relations between some ele-
ments of molecular electronic structure and molec-
ular geometry of coordination compounds.

CONSTRUCTING DMM FOR OCTAHEDRAL
COMPLEXES

As any phenomenological theory the LD theory of
the ligand influence tacitly assumes the existence of
an effective Hamiltonian describing certain group
of electrons responsible for the experimentally ob-
served behavior. The orbitals responsible for the
binding of the central atom with donor ligands can
be reasonably identified with the valence AOs of
the corresponding central atoms and with the hy-
brid orbitals (HOs) of the lone pairs (LPs) of the
ligand donor atoms. These orbitals and electrons
residing in the central atom and in the closest vi-
cinity of the latter can be termed as the CLS. In their
terms the explanation of experimental behavior has
been given in Ref. [8]. The problem is how to se-
quentially define the orbitals to be used to span the
CLS in a polyatomic system like a coordination

compound with organic ligands. Paper [17] gives a
tentative answer to this question. There we per-
formed comparative study of electronic structures
of simple amines and ethers on one hand and of
their polycyclic counterparts on another hand by
the semiempirical SLG-MNDO method [18, 19]. The
results given in Ref. [17] show that the relevant
characteristics of electronic structure (the bond or-
ders, electron densities on the bonding orbitals of
the donor atoms, and the weights of the s-functions
in the LPs) of the low-molecular amines and ethers
and their polycyclic analogs are fairly close. For this
reason we can assume that the LP HOs required for
the CLS construction can be taken from some the
strictly local geminal (SLG) based procedure for
free ligands and are subsequently only slightly
modified due to complexation.

Next question to be answered relates to the form of
the wave function 	CLS of the group of electrons in
the carrier space defined above and to the acceptable
approximation to be used for obtaining it. The LD
theory of ligand influence had been constructed with
use of the Hückel type procedure. By this the Cou-
lomb interaction within the considered subset of one-
electron states was not taken into account although
(as it is shown in the section Coulomb Contribution to
Ligand Influence) it affects the process of the charge
(electron density) redistribution in the CLS and can
give a considerable contribution to the energy (see
later). The HFR aproximation takes into account the
necessary Coulomb terms and by this the true energy
operator for the CLS group is the effective Fock op-
erator. This reduces the problem to solving the system
of Hartree–Fock equations for the occupied and va-
cant MOs in the carrier space of the CLS electron
group. For the case of an octahedral complex the
problem is further considerably simplified by symme-
try. Only the following symmetry adapted linear
combinations first introduced in Refs. [20–22] are al-
lowed to serve as either occupied or vacant canonical
MOs of the CLS:

��eGc� �
1

�12
�2	z � 2	�z � 	x � 	�x � 	y � 	�y�

��eGs� �
1
2 �	x � 	�x � 	y � 	�y�

�a�a1G� � � xa1G

s �

ya1G

�6

� �	x � 	y � 	z � 	�x � 	�y � X�z�
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�b�a1G� � ya1G

s �

xa1G

�6

� �	x � 	y � 	z � 	�x � 	�y � 	�z�

�a�t1u�� � � xt1u
� �
yt1u

�2
�	� � 	���

�b�t1u�� � yt1u
� �
xt1u

�2
�	� � 	��� (13)

where the superscripts a and/or b refer to the anti-
bonding or bonding linear combination of the sym-
metry 
� (here 
 stands for the irreducible repre-
sentation and � for its row). The basis functions 

are the one-electron states 
s—the s-orbital of the
central atom and 
� (� � x, y, z)—three p-orbitals of
the latter directed long the coordinate axes, and the
functions 	�, 	�� are the LP HOs directed along the
�-axis (� � x, y, z) of the Cartesian coordinate
system centered, respectively, at the donor atom of
the ligand located on the positive and negative
semiaxes �. There is only one instance of the MO
transforming according to either row (c or s) of the
eg symmetry. In the 12-electron complexes (in the
present context it goes about the number of elec-
trons in the CLS electron group), which will be
considered below, they are occupied. Coefficients
x
 and y
 � �1 � x


2 describe the mixing between
the central ion AOs and the ligand HOs and are to
be determined from the secular equations of the
SCF MO LCAO method. This all reduces the num-
ber of the variables describing the electronic struc-
ture of the octahedral complexes (its CLS) to only
two, which contain all information necessary to
describe the octahedral CLS, e.g.: xa1G

and xt1u. In the
octahedral symmetry the orbitals of each Ã� appear
no more than twice. For that reason the problem of
defining variables xa1 and xt1u (or their equivalents—
see later) reduces to diagonalization of the 2 � 2
Fockian blocks corresponding to the respective ir-
reducible representations:

F
 � �a
 b


b
 c

� . (14)

The exact definition of the matrix elements of the
Fockian for an SCF-treated group of electrons in the
presence of other groups is given in Refs. [17, 23].

The one-electron density matrix corresponding
to the solution of the Hartree–Fock problem in the

CLS is as any Hartree–Fock density matrix an op-
erator (matrix) P projecting to the occupied MOs:

P � xa1
2 �a1

0�a1
0� � ya1

2 �s�s� � xa1ya1��s�a1
0� � �a1

0�s��

� �
��c,s

�eG
0��eG

0�� � � �
��x,y,z

� xt1u

2 �t1u
0 ��t1u

0 �� � yt1u

2 �p��

� p�� � xt1uyt1u��p��t1u
0 �� � �t1u

0 ��p���� (15)

where the quantities x
, y
 are defined after Eq. (17)
and the orbitals with the superscript “0” refer to the
symmetry adapted combinations of the LP HOs 	�

in the right hand side of Eq. (13). The above expres-
sion can be further simplified by noticing that the
normalization condition for the quantities x
, y
 can
be absorbed in a rational function of another (sin-
gle) ESV for each 
. Indeed, a two-dimensional
operator projecting onto one-dimensional subspace
has the form:

P
 � � x

2 x
y


x
y
 y

2 � �

1
1 � v


2� 1 v


v
 v

2� .

The projection operator Eq. (15) is a direct sum of
the 2 � 2 projectors with the appropriate values of
v
 (in particular veG

� 0) taken in the required num-
ber of instances (one for each row of the irreducible
representation 
). The projection operator Eq. (15)
is one for the 12-electron complex. If it goes about a
14-electron complex the Pa1

in the direct sum has to
be replaced by the 2 � 2 identity matrix, thus
reducing the number of ECVs to only one: vt1u.

Inserting the ground state projection operator in
the Hartree–Fock expression for the energy of the
CLS electron group we get:

ECLS � �2 Sp heffP � Sp P��P��, provided

FCLS � heff � ��P�, (16)

where heff is the one-electron part of the Fock op-
erator and �[P] is the self-energy part representing
the electrostatic field induced by electrons in the
CLS group upon each other. We arrive to an explicit
expression for the energy in terms of the ESVs v
.
This is the closed expression for the energy re-
quired by the DMM methodology (the molecular
geometry enters through the respective depen-
dence of the Fockian matrix elements). Moreover it
is rational function of the ESVs involved. This ex-
pression can be efficiently searched for minimum
with respect to the relevant variables, yielding the

A MECHANISTIC MODEL FOR PES OF COORDINATION COMPOUNDS

VOL. 107, NO. 13 DOI 10.1002/qua INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 2527



equilibrium geometry and corresponding electronic
structure. For example the effective charges—key
quantities for the considerations of the section Cou-
lomb Contribution to Ligand Influence, appear as
averages of P over the corresponding AOs or HOs.

It is possible, however, to obtain analytical esti-
mates for the equilibrium values of ESVs, which
possess rather interesting properties. The simplest
analytical expression representing the solution can
be written for the product x
y
, which is expressed
through the single parameter 
:


 �
b


c
 � a


condensing all the necessary information:

x

2y


2 �
1
4 �1 �

1
1 � 


2� . (17)

If one is interested in the complex formation then
the limit 
 �� 1 has to be considered. In this case:

x

2y


2 �
1
4 


2

The opposite limit 
 �� 1 describes the situation
close to the equilibrium. In this case the following
estimate holds:

x

2y


2 �
1
4 �1 �

1



2� . (18)

These results for surely known for decades as far as
we know have never been considered from the
point of view of possible transferability of the off-
diagonal density among different molecules. This
latter property is however a key to constructing any
mechanistic model of PES as it is shown in Ref. [16].

The situation described by the formula Eq. (18)
differs in an important respect from analogous re-
sults of Ref. [15] proven for isolated two-center
two-electron bonds characteristic to organic spe-
cies. In the “organic” domain the transferability of
the off-diagonal element of the one-electron density
matrix immediately brought up the transferability
of the corresponding Coulson bond-order directly
involved in the expression for the bond energy. The
formula Eq. (18), however, applies to the density
matrix element in the basis of the symmetry
adapted linear combinations of the LP HOs. They

are not related to individual MOL bonds, which
are not even “observable” elements of molecular
electronic structure in the sense proposed by Rue-
denberg [24] (in opposition with the two-center
two-electron bonds in “organics”). By contrast the
stable (upto the second order in the presumably
small parameters 


�1) values of the one-electron
density matrix elements refer to a completely dif-
ferent elements of the construction: to the three-
dimensionally delocalized CLS group of electrons
whose ESVs themselves possess necessary transfer-
ability properties, which makes it an “observable”
component of the molecular electronic structure in
the sense of Ref. [24]. Pragmatic outcome of this
might be in replacing in the vicinity of equilibrium
of the ESVs either by transferable value of v
 � 1
(
 � a1, t1u) or by inserting the estimates Eq. (18)
and by this arriving to the PES as a function of the
nuclear coordinates only. The described result ap-
plies however to the octahedral complexes only.
The major task is to extend this treatment to the
complexes of lower symmetry, which will be done
in subsequent sections.

Perturbative Analysis of the DMM
Model of CLS and Its Relation to LD
Theory of Ligand Influence

Now let us consider what is going to happen to the
above DMM picture under the variation of composi-
tion (chemical substitution) and/or geometry both
reducing the symmetry of the CLS. Interplay between
these two types of perturbation was the main concern
in the LD theory of ligand influence. This theory
evolves in terms of two key objects: the substitution
operator and the electron-vibration (vibronic) interac-
tion operator. These two perturbations are applied to
the matrix representation of the CLS Fockian written
with respect to formally the same set of one-electron
states (central atom AOs and LP HOs). In this setting
the dependence of the Fockian on the chemical com-
position of the species involved reduces to the corre-
sponding dependence of its matrix elements. Analo-
gously the geometry dependence becomes that of the
matrix elements of the Fockian.

DMM ON NONSYMMETRICAL COORDINATION
COMPOUNDS

Whatever Fock operator can be represented as a
symmetric one and a perturbation of the latter,
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which includes both the dependence of the matrix
elements on nuclear shifts from the equilibrium
positions and the transition to a less symmetric
environment due to the substitution. To pursue this
way employing the above ESVs we introduce first
some notations. Let h� be the supervector of the first
derivatives of the matrix of the Fock operator with
respect to nuclear shifts �q counted from a symmet-
rical equilibrium configuration. By a supervector
we understand here a vector whose components
numbered by the specific nuclear shifts are them-
selves 10 � 10 matrices of the first derivatives of the
Fock operator with respect to the latter. Then the
scalar product of the vector of all nuclear shifts �q)
and of the supervector h� yields a 10 � 10 matrix of
the corrections to the Fockian linear in the nuclear
shifts:

�h���q� � �
i

�h
�qi

�qi. (19)

Next, let h� be the supermatrix of the second deriv-
atives of the matrix of the Fock operator with re-
spect to the same shifts. As previously we refer here
to supermatrix indexed by the pairs of nuclear
shifts in order to stress that the elements of this
matrix are themselves the 10 � 10 matrices of the
corresponding second derivatives of the Fockian
with respect to the shifts. The contribution of the
second order in the nuclear shifts can be given the
form of the (super)matrix average over the vector of
the nuclear shifts:

��q�h���q� � �
ij

�2h
�qi�qj

�qi�qj. (20)

Supplying this all with the 10 � 10 matrix of the
substitution operator

hS � FS
CLS � FMLnXYZ· · ·

CLS � FML6
CLS (21)

we get the “bare” perturbation of the effective
Fockian in the CLS carrier space as:

�h���q� �
1
2 ��q�h���q� � hS. (22)

This does not form the entire (“dressed”) perturba-
tion since in case the electron density changes to the
first order in the above perturbation the Fockian

acquires additional perturbation through the vari-
ation of its self-energy part, which leads to the
self-consistent perturbation. Thus the perturbed
Fockian can be written as:

F � F0�P0� � �h���q� �
1
2 ��q�h���q� � hS � ���P�

(23)

Here �P stands for the correction to the unper-
turbed projection operator P0 to the occupied MOs,
which in case to the octahedral complexes equals to
P given by Eq. (15). This serves as a prerequisite for
performing two remaining steps of the recipe of
section Account of Deductive Molecular Mechanics
of constructing a DMM description of coordination
compounds of arbitrary (low) symmetry and of the
linear response theory based on it and leading to
strictly mechanistic description of this class of com-
pounds.

To proceed further we look what is the per-
turbed density matrix. It was assumed to have the
form

P � P0 � �P � P0 � �
n�0

P�n� (24)

where the correction �P can be expanded in terms
of the matrices V satisfying the conditions:

P0V � 0; VP0 � V; �1 � P0�VP0 � V;

P0V� � V�; P0V��1 � P0� � V�; V�P0 � 0

as follows [25]:

P�1� � V � V�, P�2� � VV� � V�V,

P�3� � � VV�V � V�VV�,

P�4� � V�VV�V � VV�VV�,

which can be continued. The matrices V are 4 � 6
matrices for 12-electron complexes and 3 � 7 ma-
trices for 14-electron complexes, which organize
into a single entity independent ESVs of the prob-
lem—the first order transition densities between
the occupied and empty MOs of the unperturbed
problem. One can check that only the even terms of
the above expansion contribute to the effective
charges residing on the atoms (orbital populations)
of the CLS.
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Inserting the expansion Eq. (24) rewritten in
terms of matrices V in the energy expression Eq.
(16) with the perturbed Fockian Eq. (23) yields a
DMM model of the coordination compound of an
arbitrary symmetry since the transition densities V
take account of all possible perturbation of elec-
tronic structure keeping the CLS a separate entity.
The series Eq. (24) in fact appears by expanding the
closed expression for the projection operator:

P � �P0 � V��1 � V�V��1�P0 � V��,

which involves the inversion of a 10 � 10 matrix
and nowadays is not a great computational prob-
lem. On the other hand, it is possible to restrict
oneself with certain power in the expansion Eq. (24)
getting to polynomial model of electronic structure
of required accuracy.

It is easy to analyze the above model keeping the
terms of the total order not higher than two in �q
and V simultaneously and taking into account that
under the spur sign the argument of the self-energy
part � of the Fockian can be interchanged with the
matrix multiplier [25]. Using these moves we arrive
to:

ECLS � 2 Sp�h0P0� � Sp�P0��P0�� � 2 Sp�F0�V � V���

� E0

� 2 Sp��h���q�P0� � 2 Sp��h���q��V � V���

� Sp��V � V����V � V��� � Sp���q�h���q�P0�

� 2 Sp�F0�VV� � V�V��. (25)

At the equilibrium the terms linear in �q and V �
V� vanish so that the electronic energy becomes:

ECLS � E0 � 2 Sp��h���q��V � V���

� Sp��V � V����V � V��� � Sp���q�h���q�P0�

� 2 Sp�F0�VV� � V�V��, (26)

which is a quadratic form with respect to the nu-
clear shifts and the ESVs V. The average of the
second derivatives of the one-electron part of the
Fock operator with the operator P0 projecting to the
occupied MOs of the unperturbed system:

��q�2Sp�h�P0���q� � ��q�D0��q�

is nothing, but the bare harmonic potential of the
symmetric complex with the square dynamic ma-
trix D0 acting on the nuclear shifts. Analogously the
second order energy corrections with respect to
V—the variation of ESVs describing one-electron
density matrix:

2 Sp�F0�VV� � V�V�� � Sp��V � V����V � V���

�
1
2 V���V�� (27)

turns out to be the quadratic form giving the elec-
tronic energy as a function of the variation of the
one electron density matrix. The quantity � can be
considered as a superoperator (supermatrix) acting
in the space of the 10 � 10 matrices taken as ele-
ments of a linear space (the Liouville space). The
supermatrix � has four indices running through
one-electron states in the carrier space of the CLS
group. Then the formula

 A�B�� � Sp�A� B�

defines a scalar product in the Liouville space,
which ultimately allows the notation used in Eq.
(27). Next move consists in forming a direct sum of
the Liouville space of the of matrices V, which can
be expanded over the basis formed by the matrix
unities �b� �a� with a and b running over all basis
states of the CLS carries space and of the space
spanned by the nuclear shifts. Extending the defi-
nition of the scalar product to this new space allows
to rewrite the spurs in Eqs. (25), (26) as scalar prod-
ucts in this vector space. Then the two types of
perturbations introduced above couple by the bilin-
ear term:

2 Sp��h���q��V � V��� � V�h���q� � ��q�h��V��. (28)

This is nothing but the electron-vibration interac-
tion in the chosen notation. We remind that the
quantities h� are the three index supermatrices; they
act, respectively, to the right on the vector of nu-
clear shifts producing a 10 � 10 matrix next form-
ing a Liouville scalar product with matrix V, and on
the variations V of the density matrix, producing a
vector to be convoluted with that of nuclear shifts
�q. With use of this set of variables the energy in the
vicinity of the symmetric equilibrium point be-
comes:
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ECLS � E0 �
1
2 (�qV	D0 h�

h� �	�q)
V�� , (29)

which is a quadratic form with respect to both the
nuclear shifts and the ESVs. The substitution oper-
ator gives additional terms, which also can be recast
into the form of the scalar products in the Liouville
space:

hS � w � w�

2 Sp�hS�V � V��� � V�w�� � w�V��. (30)

With this notation the energy of the CLS becomes:

ECLS � E0 � V�w�� � w�V��

�
1
2 (�qV	D0 h�

h� �	�q)
V��. (31)

This can be treated as the minimal order of the
DMM picture for the PES of the coordination com-
pounds of nontransitional elements. It perfectly
condenses all the necessary elements of the LD
theory of the ligand influence and of the theory of
vibronic interactions. The specificity of the “class”
of compounds is fixed by the presence of the CLS
group. The specificity of a “subclass” within this
class is controlled by the number of electrons in the
CLS which defines the specific form of the quanti-
ties P0 and �. Both the geometry and the electronic
structure of the substituted or/and deformed com-
plex can be obtained (in the “harmonic” approxi-
mation) by taking derivatives of the above expres-
sion with respect to �q and V and setting these
former equal to zero. Doing that we see that the
fixed deformation ��q) and the substitution w result
in the modification of the electronic structure as
compared to the symmetric undeformed complex.
The amount of the modification bringing the sys-
tem back to the new equilibrium is given by the
formula:

�V�� � ��1�h���q) � w��. (32)

It is remarkable that the supermatrix ��1 is nothing
(Pupyshev, Private communication) but the polar-
ization propagator II for the CLS subsystem calcu-
lated for the symmetric molecule. With this we get:

V � ��h���q) � w��. (33)

This performs the announced program of obtaining
a closed expression for the energy of the coordina-
tion compound (or at least of its CLS) in terms of its
geometry and ESVs.

PES OF COORDINATION COMPOUND AS
DERIVED FROM DMM

Now we can turn to deriving a true mechanistic
(MM-like) model for coordination compounds of
nontransition element by excluding the ESVs V.
Inserting Eq. (33) in Eq. (31) we get for the energy:

1
2 ���q�D��q� � ��qh����h����q� � w���w��

� ��qh���w�� � w���h����q�. (34)

This expression in a condensed form contains all
the results, which are in details are obtained in [8],
namely the theory of ligand influence, which can be
considered as a response of molecular geometry to
the chemical substitution. For example, optimizing
the above expression with respect to ��q) yields the
response of the complex geometry to the substitu-
tion of the ligands. One easily gets the close expres-
sion for it:

��q) � � D�1�h����w��.

Of course, within such a formulation the effect of
the substitution does not reduce to modification of
the nonbonding potentials felt by the ligands (sec-
tion Coulomb Contribution to Ligand Influence).
By contrast the substitution affects the very sub-
stance of what is going on. Different ligands are
characterized by their specific contributions to the
Fockian for the CLS group. In the simplest approx-
imation adopted in Ref. [8] the ligand is character-
ized by its diagonal Fockian matrix element, which
is a true parameter of the model. The semiempirical
SLG theory as applied to isolated ligands allows to
estimate these quantities related to the LPs and
even provides formulae describing their depen-
dence on the deformations of the “organic” bonds
incident to the donor atom. However, it is impor-
tant to mention already now that replacing one
ligand by another in a coordination compound (lo-
cal perturbation) produces a nonlocal effect in that
sense that it does not necessary decrease with the
distance from the perturbation location (as it will be
formally described later).
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The MM-like model of complexes of nontransi-
tion elements requires even less than it is given by
Eq. (34): only the first and the second term in the
first row. They represent the bare harmonic depen-
dence of the energy on the nuclear shifts and the
renormalizations of the respective harmonic con-
stants due to adjustment of the electronic structure
to these shifts:

D � D0 � h����h���.

As we mentioned previously the specifics of the
central atoms in coordination compounds is deter-
mined by the structure of the supermatrix �, which
is in its turn predefined by the structure of the
carrier space of the CLS group and by the number
of electrons in it. Indeed, the supermatrix � of the
polarization propagator is particularly simple in the
basis of the eigenstates of the Fock operator F0. Its
matrix elements are:

�ii�jj� �
�ii��jj�

�i � �j

where the subscripts ii� run over all occupied MOs
and the subscripts jj� run over the vacant ones. In
this basis the elements Vji of the matrix V and of its
conjugate by definition represent the transition
densities between the i-th occupied and the j-th
empty MO. They are numerical coefficients at the
matrix unities �j� �i� being the basis vectors of the
Liouville space. In terms of the Liouville space the
superoperator � can be written:

� � �
i�occ
j�vac

�i3 j��i3 j�
�i � �j

(�i3 j�� is the Liouville space notation for the matrix
unity �j� �i�), which allows the straightforward use of
the scalar product formulae with notion that:

i3 j�i�3 j��� � i�i��j�j�� � �ii��jj�.

The simplest approximate description of � corre-
sponds to what is known as the frontier orbitals
approximation where only the highest occupied
and lowest unoccupied MOs (HOMO and LUMO,
respectively) are involved. Within it one gets:

�hh�ll� � �hh��ll���H � �L)�1

where subscripts hh� run over the orbitals in the
HOMO manifold (they may be degenerate in the
highly symmetric case) and ll� do the same in the
possibly degenerate LUMO manifold.

The given formulae contain all necessary results
but cannot be easily qualitatively interpreted. The
necessary interpretation had been done by Levin
and Dyachkov and is based on clarifying the inter-
play of the effects produced by substitution and
vibronic operators upon the solution of the Hückel-
like problem in the 10-dimensional orbital carrier
space with use of symmetry considerations. This
will be done in the next section.

SYMMETRY ADAPTED FORMULATION

For the purposes of the present paper the symmetry
analysis of Ref. [8] can be reformulated as follows.
The deformation of the molecule of a coordination
compound �q) is a vector with the components
referring to the individual nuclear shifts:

��q) � �
i

�qi�i).

For a symmetric (say, octahedral) molecule it may
be rewritten with use of the symmetry adapted
nuclear shifts:

��q) � �

�

�q
��
�)

where 
 and � refer, respectively, to the irreducible
representation of the symmetry group and its row
(in the case of a degenerate irreducible representa-
tion). In an octahedral complex if only the shifts
leading to the MOL (MOX) bond lengths variation
are concerned the symmetry classification suffice to
label all possible collective shifts which can be ei-
ther of a1g, eg, or t1u symmetry. They can be explic-
itly written through the nuclear shifts of the indi-
vidual ligands according to:

�a1G) �
1

�6
��xLx� � �xL�x) � �yLy) � �yL�y) � �zLz)

� �zL�z)],

�eGs) �
1
2 ��xLx � �xL�x� � �yLy) � �yL�y)],
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2532 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY DOI 10.1002/qua VOL. 107, NO. 13



�eGc) �
1

2�3
�2�zLz� � 2�zL�z) � �xLx) � �xL�x) � �yLy)

� �yL�y)],

�t1u�) �
1

�2
���L�

� � ��L��
)].

The meaning of notation for the individual nuclear
shifts is that ��L�) represents a unit shift in the
positive direction along the � axis of the ligand
located at the �� semiaxis of the coordinate frame.

A remarkable feature is that the derivative of
one-electron part of the Fockian with respect to the
symmetry adapted nuclear shift �q
� (an operator
acting on the one-electron states in the CLS carrier
space) itself transforms according to the irreducible
representation 
 and its row �. That means that
applying the deformation �
�) to a complex results
in a perturbation of the Fock operator having the
same symmetry 
�. This allows to write the vi-
bronic operator in a symmetry adapted form:

�h���q� � �

�

�q
��h�
��
��

Finally, the substitution operator can be expanded
as a sum of symmetry adapted components. For
example, in the octahedral complex single substitu-
tion ML6 3 ML5X defined in the section Coulomb
Contribution to Ligand Influence results in the sub-
stitution operator:

hS �
1

�6
ha1G

S �
1

�3
heGc

S �
1

�2
ht1uz

S

As we see for the symmetric system all the elements
of the present picture are classified according to
irreducible representations of the relevant symme-
try group—Oh. For example, the energies defining
the polarization propagator depend on 
H and 
L,
but not on the rows �H and �L of the involved
irreducible representations. Using the symmetry
notation for the polarization propagator allows
simply realize its role as a selection mechanism for
interaction of different perturbations. As we men-
tioned, in the frontier orbitals approximation the
only energy parameter is the gap �H � �L. The
polarization propagator thus acquires the form

� � ��H � �L�
�1 �

�H,�L

��H3 �L���H3 �L�

It is obvious that the superoperator � acts as a
projection operator in the Liouville space cutting
out those components of the 10 � 10 transition
density matrices which mix �H state with the �L
state, which is only possible if the symmetries of the
perturbations both the symmetry of deformation

def and the symmetry of substitution 
S satisfy the
selection rule:


def,
S � 
H R 
L

i.e., both enter in the expansion of the tensor prod-
uct of the irreducible representations of the frontier
orbitals.

OFF-DIAGONAL ELASTIC CONSTANTS FOR
STRETCHINGS OF BONDS INCIDENT TO THE
CENTRAL ATOM

Up to this point our main concern was to reformu-
late the results of the LD ligand influence theory in
the DMM form. Its main content was the symmetry
based analysis of the possible interplay between
two types of perturbation: substitution and defor-
mation, which is controlled by the selection rules
incorporated in the polarization propagator of the
CLS. The mechanism of this interplay can be simply
formulated as follows: substitution produces per-
turbations of different symmetries, which are sup-
posed to induce transition densities of the same
symmetries. In the frontier orbital approximation
only those densities among all possible ones can
actually appear which have the symmetry which
enters into decomposition of the tensor product 
H
R 
L to the irreducible representations. These sur-
vived transition densities then induce the geometry
deformations of the same symmetry as those
former.

The deformation (nuclear shifts) may play the
same role as the substitution. Inducing a deforma-
tion of some symmetry leads to appearance of the
transition densities of the corresponding symmetry.
The same selection rule as that for the substitution
makes only the symmetry component entering into
decomposition of the tensor product 
H R 
L to
survive and to induce the deformation of the same
symmetry. For example: the z-shift of the apical
ligand expands as:
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�zLz) � 
 1

�6
�a1G) �

1

�3
�eGc) �

1

�2
�t1uz)�

Thus it may produce the transitional densities of
the a1g, egc, and t1uz symmetries. At this point se-
lection rules pertinent to the frontier orbitals ap-
proximation enter: for the 12-electron complexes
the symmetries of the frontier orbitals are 
H � eg

and 
L � a1g, the tensor product 
H R 
L � eg R a1g

� eg contains only the irreducible representation eg

so that the selection rules allow only the density
component of the egc symmetry to appear. In its
turn this density induces additional deformation of
the same symmetry. That means that in the frontier
orbitals approximation only the elastic constant for
the vibration modes of the symmetry eg is renor-
malized. This result is worth to be understood in
terms of individual nuclear shifts of the ligands in
the trans- and cis- positions relative to the apical
one. They, respectively, are:

�zL�z) � � 
 1

�6
�a1G) �

1

�3
�eGc) �

1

�2
�t1uz)�

�xLx) � 
 1

�6
�a1G) �

1

2�3
�eGc) �

1
2 �eGs)

�
1

�2
�t1ux)� .

Combining this all we obtain for the off-diagonal
constant coupling the individual shifts of the li-
gands in the trans-positions to each other as:

1
3 �eGc�h�eGc���h�eGc���eGc�

and for the off-diagonal constant coupling the in-
dividual shifts of the ligands in the cis-positions to
each other we get

�
1
6 �eGc�h�eGc���h�eGc���eGc�.

By contrast for the 14-electron complexes (non-
transition nonmetals) the symmetries of the frontier
orbitals are: 
H � a1g and 
L � t1u and the tensor
product 
H R 
L � a1g R t1u � t1u so that only the
transition density corresponding to the representa-
tion t1u survive. Analogous moves allow to con-

clude that the off-diagonal elastic constant for
stretching the trans-bonds has the form:

�
1
2 �t1uz�h�t1uz���h�t1uz���t1uz�,

whereas that for the cis-bonds vanishes.
This allows to make some predictions concern-

ing the off-diagonal elastic constants depending on
the electron count in their CLS. Due to different
symmetry properties of the polarization propagator
in these two cases (and according to the LD picture,
which ultimately explains the qualitative difference
in the stereochemistry of the 12- and 14- electron
complexes), the off-diagonal constant coupling the
shifts of the ligands in the trans- and cis-positions to
each other in the 12-electron case is expected to
have different sign. The sign of the off-diagonal
coupling of the trans-positioned ligands in the 14-
electron case is expected to be the same as that for
the cis-positioned ligands in the 12-electron case,
whereas the coupling of the shifts of the cis-posi-
tioned ligands in the 14-electron case is expected to
be small.

MEDIUM RANGE OFF-DIAGONAL ELASTIC
CONSTANTS

In the above subsection we obtained some esti-
mates for the off-diagonal harmonic terms coupling
the stretching of different MOL bonds incident to
the central atom. The employed treatment can be
extended to other types of off-diagonal terms. They
originate as well from the h�IIh� term in the general
energy expression. The traditional MM picture
tends to avoid the appearance such off-diagonal
terms and tries to represent the energy as a sum of
force fields attributed to local elements of molecular
structure like bonds, etc. This implies the strictly
local character of the underlying electronic struc-
ture. It is easy to understand also from a pragmatic
point of view since including long-range type-spe-
cific terms in addition to those already introduced
makes the entire parameterization too complicated.
On the other hand, in case when the electronic
structure is physically formed by not that local
element as two-center bonds this must be reflected
in the corresponding force fields. Incidentally, the
coordination compounds possess such delocalized
structure elements—the CLS—where one-electron
states are extended over all atoms forming it. In
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such a situation one has to expect some medium
range off-diagonal harmonic couplings, i.e., specific
effective coupling between the deformations occur-
ring at the separations usually not included in the
MM-like consideration. With use of the developed
technique it is possible to get estimates of such
“off-diagonal” elements of the harmonic molecular
potential with participation of the metal atom, the
very existence of which in the PES expansion is
difficult to imagine if not only to stick to an infor-
mationless idea that “all must be included.” As an
illustrative example we consider a two-coordinated
linear complex. The chemical examples are pro-
vided by the compounds of Cu�, Ag�, or Hg2�. In
the context of the standard MM analysis it is as-
sumed that the interactions between the atoms sep-
arated by more than three bonds are not specific
and must be taken into account as nonbonded
“fields” with use of the Lennard–Jones potentials.
Meanwhile, using the technique presented above it
can be easily shown that in the case of the above
metal complexes there are specific interactions of
noticeable magnitude, which according to standard
scheme must be classified as the 1–5 interactions
(those between the atoms separated by four bonds).

Let us consider a (metal) ion bearing as previ-
ously four vacant (one s and three p) orbitals. As
previously we assume that ligand molecules are
represented by one LP each. In the case of linear
coordination (z-axis is the molecular axis) and as-
suming that in the equilibrium state the LPs are
directed along the bonds between the donor atoms
and the metal atom the symmetry adapted combi-
nations of the LPs have the form:

�a�
�0�� �

1

�2
��u� � �l�).

According to [14] the LP HOs �u� and �l� (upper and
lower with respect to the z-axis) are composed of s-
and p-orbitals of the donor atom, which are directed
along the unit vectors e�u and e�l:

�u� � s�su� � �1 � s2�pe�u�

�l� � s�sl� � �1 � s2�pe�l� (35)

(with the obvious sense of s as a coefficient of the
corresponding s-orbital in the expansion of the cor-
responding HO). With use of these definitions and
of the symmetry considerations it is easy to identify

nonvanishing matrix elements of the Fock operator
acting in the CLS:

��h�a�
�0�� � �2����

DMs � ��
DM�1 � s2� � 0,

�h�a�
�0�� � �2���

DMs � �
DM�1 � s2� � 0,

where ���
DM, ��

DM, ��
DM, and �

DM are the resonance
(one-electron hopping) integrals in the diatomic co-
ordinate frame for the pairs metal–donor atom and
where we denote by � and , respectively, the s- and
p-states of the metal and donor atoms, having the �
symmetry with respect to the molecular axis (linear
coordination).

The nontrivial one-electron eigenstates of the ef-
fective Fock operator for this CLS have the form:

occupied:

�a�� � y���� � x��a�
�0��, �a�� � y��� � x��a�

�0��

empty:

�a*�� � � x���� � y��a�
�0��, �a*�� � � x��� � y��a�

�0��.

(36)

Two more states of the �-symmetry (��� and ���) on
the metal ion remain unchanged as in the free metal
ion and both are empty. The frontier orbitals here
are the �a�� (HOMO) and those in the �-manyfold
(��� and ���—LUMO).

Now let us assume that the LPs belong to poly-
atomic ligands. Then a valence angle MDX with a
vertex at a donor atom D is one of the geometry
variables of the molecules in the standard MM set-
ting. We shall estimate the magnitude of the indi-
rect (CLS mediated) interactions between variations
of these valence angles. Further consideration
evolves as follows. We assume the LPs to be rigidly
attached to the ligands. Then changing the valence
angle MDX by �	u (�	l) yields the corresponding
nonvanishing angle between the vector e�u (e�l) and
molecular axis. It respectively turns on the reso-
nance interaction between this LP and the ��� state of
the metal atom (we assume that either of the ligand
LPs and the metal atom itself stay in the (�) plane).
The corresponding matrix elements are:

��h�u� � ���
DM�1 � s2 sin �	u

��h�l� � ���
DM�1 � s2 sin �	l
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where ���
DM is the resonance (one-electron hopping)

parameter for the pair of states of the metal and
donor atoms, which have �-symmetry with respect
to molecular axis. The derivatives of these matrix
elements (and of the Fockian itself) with respect to
�	u and �	l are:

��	 �h
�	u

	u� ��	r�0 � ��	 �h
�	l

	 l� ��	l�0 � ���
DM�1 � s2

��	�h
�	l

	u� � ��	 �h
�	u

	l� � 0.

The deformation coordinates ��	u) and ��	l) appar-
ently transform according to the �-th row of the
representation � and can be further combined into
the symmetric and antisymmetric adapted coordi-
nates with respect to the plane perpendicular to the
molecular axis:

��	�) �
1
2 ���	u� � ��	l)) ��	�) �

1
2 ���	u�

� ��	l)).

The individual deformation coordinates recover
from the relations:

��	u) � ���	�� � ��	�))

��	l) � ���	�� � ��	�)).

Assembling the relevant terms (those producing the
antisymmetric �-transition densities in the CLS) we
get for the off-diagonal interaction of two valence
angles the following expression:

K�

K�	u�	l

���
2 x�

2 �1 � s2�

4��p � �L�

whose numerical value can be estimated as follows:
for the sp3 of the donor atoms s2 � 1/4, the weight
x�

2 of the antisymmetric combination of the ligand
LP states in the corresponding HOMO can be safely
estimated as 2/3 so that with the energy gap
(�p��L) of about 5 eV and the same value of ��� we
arrive to the estimate for K of 0.7 eV/rad2, which
can be treated as if not a large but noticeable spe-
cific contribution of the 1–5 types.

Discussion

It is a widespread point of view in the MM com-
munity that the latter represents a “practical” alter-
native to standard quantum chemical treatments of
molecular structure. On this basis the quantum me-
chanical models are taken as excessively complex
and superfluous as compared to the problems to be
solved. The problem, however, is that in the ab-
sence of such models it is difficult to estimate to
what extent each specific problem possibly fits to
some may be adjusted MM scheme or by contrast
requires some essentially quantum mechanical ap-
proach to be solved. On the other hand just practi-
cal needs stipulate the interest in developing some
MM-like models for wider classes of molecules as
compared to “organic” ones for which the standard
MM treatment is by many examples proven to be
valid. The key point is that in fact behind any
“classical” MM picture there is always covered a
fairly quantum view of molecular electronic struc-
ture. As it was shown previously [17] it is possible
to imagine and to successfully construct more gen-
eral mechanistic models of molecular potentials
(PES) than usually accepted “balls-and-springs”
models of the standard MM. The derivation in Ref.
[17] is based on the concept of electron group dat-
ing back to McWeeny [25] and on the “semiobserv-
ability” of these groups introduced by Ruedenberg
[24]. In these terms one can state that classical MM
of organic molecules implies that two-electron
groups describing bonds are “semiobservable,” i.e.,
well-defined stable groups spanning the molecular
electronic structure. Then the moves described in
the section Account of Deductive Molecular Me-
chanics result in a fairly mechanistic picture of in-
teracting atomic tetrahedra representing the sets of
orthogonal HOs, which can be further transformed
to the standard MM with the externally, i.e., inde-
pendently defined force field parameters. The prob-
lems faced when extending any MM-like descrip-
tion to other classes of molecules is the lack of
understanding of the pertinent electronic group
structure of the wavefunctions characteristic for the
new classes of compounds to be included in the
MM domain. At a first glance all the characteristics
of the coordination bonds: mutual influence of the
ligands, charge redistribution, dependence of mag-
netic properties on tiny details of molecular geom-
etry, and composition (these latter not addressed in
the present paper)—all have too much of quantum
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2536 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY DOI 10.1002/qua VOL. 107, NO. 13



origin so that no mechanistic model of these prop-
erties is possible. This point of view seems to be,
however, an opposite extreme. Finally the MM is
quite a flexible tool, not limiting anyhow either the
complexity of the force fields to be used or other
characteristics of the model. In the present paper
we employed the representation of the electronic
structure of coordination compounds in the form of
the group function product recently formalized in
Ref. [17] and developed a mechanistic picture of
their PES involving some necessary elements of the
electronic structure description through the ESVs �


and V. This approach can be qualified as a DMM of
the CLS group of electrons specific for the octahe-
dral environment. For other types of coordination
analogous picture can be developed, which may be
useful provided the electronic structure of the mol-
ecule at hand can be described with use of the
corresponding CLS group. Then using the pertur-
bation theory the EVSs have been excluded from
the consideration, thus yielding the estimates for
the parameters of the force fields of more tradi-
tional form.

The models thus built remain mechanistic ones,
but they naturally take into account those impor-
tant features of the electronic structure, which in a
standard formulation would require innumerable
parameterizations for more and more tricky force
fields whose form anyway remains without any
fundamental basis. For example, thus obtained off-
diagonal elastic constants do not assume the angu-
lar dependent form like

K � sin 2�

proposed in Ref. [6] (� stands for the valence angle
between the bonds incident to the central ion), but
suggest an existence of some more or less stable
ratio between the constants describing coupling of
the cis- and trans-positioned ligands. Also the ob-
tained estimates allow to relate the sign and other
characteristics of these off-diagonal constants with
the chemical nature of the central atom, which is a
complex problem for classical MM itself.

The performed analysis shows the weakness of
all tentative attempts to include metals into “clas-
sical” MM. Within the classically looking picture
possible influence effects are attributed to charge
redistributions among other possibilities. In fact the
charge variations are the quantities of the second
order in the ESVs V, whereas the energy in the

DMM picture depends already on the first power of
V. This affects the entire structure of the theory
where the polarization propagator supermatrix be-
comes the key player defining the generalized elas-
tic properties of molecular electronic structure ex-
pressed in terms of the ESVs V in the harmonic
approximation. Of course this treatment is parallel
to the random phase approximation (see e.g. Ref.
[25]). It is also fair to say that polarization propa-
gators were in use when analyzing the substitution
effects in the coordination compounds at a pretty
early stage of these studies (see Refs. [26–28]).
However, in these papers the polarization propa-
gator was used within the reactivity indices para-
digm: i.e., in order to estimate some elements of the
density matrices considered as “indices of influ-
ence” rather the molecular energy itself. The gen-
eral vibronic approach of Ref. [7] adopted in Ref. [8]
stressed the possibility of explicit expression for the
PES of substituted compounds, but did not under-
line the importance of the polarization propagator.
This is done in the present paper.

Conclusion

In the present paper we developed a structure of
possible MM of coordination compounds analyzing
the electronic structure of the CLS of this class of
molecules. The obtained expressions can be used
either as a standalone theory of the DMM style or as
a source of independent estimates of the relevant
force fields in classical MM of coordination com-
pounds.
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