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Quantum-chemical computations of solids benefit enormously

from numerically efficient plane-wave (PW) basis sets, and

together with the projector augmented-wave (PAW) method,

the latter have risen to one of the predominant standards in

computational solid-state sciences. Despite their advantages,

plane waves lack local information, which makes the interpre-

tation of local densities-of-states (DOS) difficult and precludes

the direct use of atom-resolved chemical bonding indicators

such as the crystal orbital overlap population (COOP) and the

crystal orbital Hamilton population (COHP) techniques.

Recently, a number of methods have been proposed to over-

come this fundamental issue, built around the concept of

basis-set projection onto a local auxiliary basis. In this work,

we propose a novel computational technique toward this goal

by transferring the PW/PAW wavefunctions to a properly cho-

sen local basis using analytically derived expressions. In partic-

ular, we describe a general approach to project both PW and

PAW eigenstates onto given custom orbitals, which we then

exemplify at the hand of contracted multiple-f Slater-type

orbitals. The validity of the method presented here is illus-

trated by applications to chemical textbook examples—dia-

mond, gallium arsenide, the transition-metal titanium—as well

as nanoscale allotropes of carbon: a nanotube and the C60 full-

erene. Remarkably, the analytical approach not only recovers

the total and projected electronic DOS with a high degree of

confidence, but it also yields a realistic chemical-bonding pic-

ture in the framework of the projected COHP method. VC 2013
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Introduction

First-principles electronic-structure computations have become

an invaluable part of today’s solid-state chemistry, physics, and

materials science. Among the most important frameworks for

such approaches is the use of periodic plane-wave (PW) basis

sets in combination with elaborated density-functional theory

(DFT) parametrizations. The amenities of PW bases are compu-

tational efficiency,[1] the excellent compliance with structural

optimization cycles,[2] the principal absence of basis-set bias or

basis-set superposition errors,[3] and the ability to describe

extended materials beyond “classical” densely packed solids:

low-dimensionally extended structures such as graphene[4] or

nanotubes,[5] surfaces and adsorbates,[6] isolated molecules[7]

and crystalline fragments,[8] all in the same framework.

To analyze and interpret the complicated electronic struc-

tures of solid-state materials, chemical bonding concepts

based on atomic orbitals (AOs) have turned out as especially

profitable. Indeed, techniques such as the crystal orbital over-

lap population (COOP)[9,10] and the analogous crystal orbital

Hamilton population (COHP)[11,12] provide a straightforward

view onto orbital-pair interactions, and they have been used

in a plethora of scientific contributions (for some recent appli-

cations see Ref. 13). However, by their very nature, these

methods require a local description of the electronic structure

in terms of atom-centered orbitals which then allow to con-

struct the overlap and Hamilton operator matrices. In other

words, both COOP and COHP are not directly accessible in any

PW framework.

Fortunately enough, it is possible to regain the required

locality by reconstructing the electronic wavefunction, that is,

by projecting it onto a suitably chosen local auxiliary basis.[14–20]

Several approaches toward this aim exist, and as early as in

1977, Chadi implemented a projection from delocalized wave-

functions to local orbitals.[14] We mention S�achez-Portal, Arta-

cho, and Soler,[15] who first projected PW eigenstates to

different types of local basis sets,[16] thereby introducing the

conceptual framework that, in principle, underlies the present

work, too. S�anchez-Portal et al. showed how the reconstructed

wavefunction can be analyzed to recover chemical informa-

tion: band structures and also Mulliken population analyses for

those obtained orbitals. Segall et al. took this method to pro-

ject onto orbitals that were built from the pseudopotentials

used for the PW calculation,[17] and applied traditional popula-

tion analyses such as the Mulliken scheme to a range of bulk

materials,[18] as well. A further advantage of such projection

techniques was outlined by Bester and F€ahnle who, by projec-

ting plane waves onto a local basis in a mixed-basis frame-

work, were able to use the “covalent energy” Ecov bonding

indicator.[19] In a previous work,[21] we introduced a variant of
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the familiar COHP approach that, other than before, stems

from a PW computation and was consequently dubbed

“projected COHP” (pCOHP); we will return to this concept in a

moment. Shortly after that, Dunnington and Schmidt have

independently reported on a projection technique from pro-

jector augmented-wave (PAW) wavefunctions, taking the PAW

method into account explicitly. The projection facilitated nat-

ural bond orbital analysis with Gaussian-type local basis sets,

and they obtained highly descriptive results.[20] Subsequent

to the work of the latter authors, very recently other methods

were reported that also use projections.[22–24] Although per-

formed on different routes and with different methodologies,

the very basic chemical intention of all these approaches is

similar, namely, to extract easily interpretable bonding infor-

mation from PW based DFT. Clearly, this field of research is

gaining increased attention, and for good reason.

Theory

So, let us formulate the problem at hand: we seek to extract

informative quantities regarding chemical-bonding analysis.

The most easily retrievable of those is the local density-of-

states (LDOS) function

LDOSl~T ;l0~T 0 ðEÞ ¼
X

j;~k

C�
l~T ;j
ð~kÞCl0~T 0 ;jð~kÞdðEjð~kÞ2EÞ; (1)

where Cð~kÞ contains the coefficients of linear combinations of

AOs l to represent crystal orbitals (LCAO-CO), building the

wavefunction of the j-th band. The indices of the AOs are a

short-hand notation (l � A; L) to represent the orbital at atom

A, positioned at the point ~RA in the unit cell given by the lat-

tice vector ~T , with the quantum numbers L (� n, l, and m). In

all of the following, we separate the indices for rows and col-

umns of matrix entries by a comma. Here is another matter of

definition (or taste): in a true LCAO computation, we speak of

an LDOS, whereas in a projected framework we speak of the

projected DOS (pDOS); the above definition still holds, the

only difference being the route to obtain the coefficient matri-

ces Cð~kÞ.
In passing, this very definition leads to the well-known

COOP analysis, if one only looks at the so-called off-site ele-

ments in eq. (1), indexed by m,

COOPl~T ;m~T 0 ðEÞ ¼ Sl~T ;m~T 0

X
j;~k

C�
l~T ;j
ð~kÞCm~T 0 ;jð~kÞdðEjð~kÞ2EÞ; (2)

if l and m are centered on different atoms A and B. We note

that the projected analog [which would be dubbed projected

crystal orbital overlap population (pCOOP)] has in fact been

applied already in 1998,[25] but has not gained too much

attention since then, possibly due to a lack of broad

availability.

The same framework leads to another definition, namely,

the COHP; the latter may be energy-integrated to yield a mea-

sure of chemical-bonding strength and it was originally

defined in 1993 as[11]

COHPl~T ;m~T 0 ðEÞ ¼ Hl~T ;m~T 0

X
j;~k

fjð~kÞC�l~T ;jð~kÞCm~T 0 ;jð~kÞdðEjð~kÞ2EÞ: (3)

Here, Hl~T ;m~T 0 are the elements of the Hamiltonian matrix H, and

fjð~kÞ are the occupation numbers.* Its projected analog, the

pCOHP, was introduced in our previous work[21] under the

assumption that the projections—and by that the matrices

Cð~kÞ—are available. This work will deal with the projection itself

and an analytically robust way to obtain these projections.

Where do we start?

As said before, the definitions of eqs. (1)–(3) are specified in a

basis of local AOs of a solid and thus, their application is not

directly possible in a PW-based framework. These equations

also reveal that the key quantities are given in terms of the

band (Bloch) states, written as an LCAO-CO. In contrast, a PW-

based PAW calculation for a solid gives the band wavefunction

jwjð~kÞi expressed through a pseudospace (PS) function j~w jð~kÞi
and an additional “augmentation part”:[26]

jwjð~kÞi ¼ j~w jð~kÞi þ
X
l~T

ðj/l~T i2j~/l~T iÞh~pl~T j~w jð~kÞi: (4)

Atomic calculations, performed during the generation of the

PAW data set, yield appropriate all-electron (AE) partial waves

j/li and the PS partial waves j~/li; both are then tabulated

and stay unmodified during the actual quantum-chemical

computation (and that is one of the aspects that make the

method elegant). These quantities are defined within spheres

around the atoms in the unit cell, and we find their periodic

replicas in different unit cells (at the respective translation vec-

tor ~T ) using the phase factor exp fi~k~Tg. To make those PAW

datasets more versatile, it is possible to use multiple orbitals

to each l channel.[27] Those partial waves essentially define the

projector functions j~pl~T i, which are dual to the PS partial

waves:

h~pl~T j~/m~T 0 i ¼ dlmd~T ~T 0 : (5)

The quantity that is optimized during each PAW calculation

is the PS wavefunction for the j-th band, and it is defined as

an expansion over plane waves as in

j~w jð~kÞi ¼
1ffiffiffiffi
X
p

X
~G

CPW
j~G
ð~kÞeið~k þ~GÞ~r ; (6)

where X is the volume of the unit cell in real space, and the

sum runs over reciprocal-space vectors ~G—infinitely many, in

theory; sufficiently many to achieve reasonable convergence,

in practice.

*Note that the occupation numbers given in the COHP definition

would render any visualization above the Fermi level zero. Thus, for

drawing 2COHPðEÞ plots, these occupation numbers are omitted by

convention.
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Projection: the central idea

To establish correspondence between the PAW and LCAO-CO

settings, we request that the PAW band functions coincide with

the projected band functions jX jð~kÞi;[22] the latter are given by

the expansions over all basis AOs, again indexed by m:

jwjð~kÞi ¼
! jX jð~kÞi ¼

X
m~T

Cm~T ;jð~kÞjvm~T i: (7)

In contrast to our previous work—which served as a meth-

odological proof of concept and introduced the pCOHP as

such—we now search for a full, analytic projection formalism

that takes into account the peculiarities of the PW/PAW

method, as well. The derivation given here is hence somewhat

lengthy and many of the presented formulas have already

been given elsewhere, but we believe it will be useful to have

exact expressions in a self-consistent form at hand at this

stage. We also note that the theory presented in Ref. 21 is

straightforwardly generalized and in this way made applicable

to a wide range of complex solid-state systems.

Equation (7) manifests once more that the crucial step to

accomplish is finding the LCAO-CO coefficients—here, col-

lected in the Cð~kÞ matrix—from the results of a self-consistent

PAW computation. In order to do so, we combine the AOs to

the Bloch sums[28] corresponding to a specific value of ~k :

jvlð~kÞi ¼
1ffiffiffiffiffiffi
N~T

p X
~T

ei~k~T jvl~T i: (8)

Then, we multiply this into eq. (7) from the left, thereby

yielding expansion coefficients of jX jð~kÞi in terms of the Bloch

sums Bl;jð~kÞ

hvmð~kÞjX jð~kÞi ¼
X

l

hvmð~kÞjvlð~kÞi|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼ Sl;mð~kÞ

Bl;jð~kÞ; (9)

and these expansion coefficients are connected to Cð~kÞ via

Cl~T ;jð~kÞ ¼
1ffiffiffiffiffiffi
N~T

p ei~k~T Bl;jð~kÞ: (10)

In our previous work,[21] the overlap between the PW-based

wavefunction and a local orbital was dubbed transfer-matrix

element Tl;jð~kÞ. Combining this with eqs. (7) and (9), we obtain

Tl;jð~kÞ ¼ hvlð~kÞjwjð~kÞi ¼
ð7Þ hvlð~kÞjX jð~kÞi (11)

¼ð9Þ
X

m

Sl;mð~kÞBm;jð~kÞ (12)

or, in terms of matrix algebra,

Sð~kÞBð~kÞ ¼ Tð~kÞ: (13)

This equation system can be solved for Bð~kÞ using the LU

(lower/upper triangular matrix) or singular value decomposi-

tions (SVD) of Sð~kÞ:

As eq. (13) shows, Bð~kÞ is derived from Tð~kÞ, and the latter

is needed. Within the PAW framework, two representations of

the wavefunctions—AE and PS—are given. Here, we stick to

the AE representation; starting from eq. (4) and introducing

the short-hand notation j�/li � j/li2j~/li, we get

Tl;jð~kÞ ¼ hvlð~kÞj~w jð~kÞi|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼ TPS

l;j ð~kÞ

þ
X
l~T

hvlð~kÞj�/l~T ih~pl~T j~w jð~kÞi

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ T aug

l;j ð~kÞ

: (14)

Hence, the transfer-matrix element (from which everything

else will then be derived) has been separated into two addi-

tive parts—first, the projection of the PS wavefunction onto

local orbitals, T PS
l;j ð~kÞ, and second, the projection of the aug-

mentation part, T aug
l;j ð~kÞ. As seen in the above equation, we

are left with three scalar products (or specific to function

space: integrals) to evaluate.

Three scalar products

First, we deal with T PS
l;j ð~kÞ analytically. The rigorous derivation

is given in the Appendix for clarity. Using another convenient

short-hand notation, j � k þ G, we need to search for

T PS
l;j ð~kÞ ¼

ffiffiffiffiffiffi
N~T

X

r X
~G

CPW
j~G
ð~kÞei~j ~RA

ð
d3~rei~j~r v�l ~rð Þ: (15)

For obvious reasons, local atom-centered orbitals are rou-

tinely defined as having real, not complex radial parts; this is

true also for the Slater-type orbitals (STOs) we seek to use

here. Furthermore, for reasons of chemical interpretability,[13]

we also choose real spherical harmonics to reflect the topol-

ogy of the local orbitals (i.e., we use px, py orbitals and so on).

This makes vlð~rÞ real-valued, as well, and the complex conju-

gate in eq. (15) may be dropped. In addition, the reciprocal

lattice vectors ~G are chosen such that their scalar products

with the real-space translation vectors simplify to ~G � ~T ¼ 2p,

as is done in standard PAW codes.

Mathematically, the remaining integral term of eq. (15) is a

Fourier transformation (FT) of the local orbital vlð~rÞ, which we

will denote as v̂lð~jÞ ¼
Ð

d3~r ei~j�~r vlð~rÞ, and we will return to

the choice of v̂l in a moment. Inserting it into eq. (15) yields

an analytic formula to calculate the PS transfer-matrix ele-

ments given that the FT of the AO is known:

T PS
l;j ð~kÞ ¼

ffiffiffiffiffiffi
N~T

X

r X
~G

CPW
j~G
ð~kÞei~j�~RA v̂lð~jÞ: (16)

If one used a true PW code, that is, did not make use of the

PAW method, this integral would constitute the entire transfer

matrix Tð~kÞ. In practice, however, doing so is not very much

worthwhile because in proximity to the atomic cores, the

wavefunctions oscillate strongly, which would require

enormous amounts of PWs to describe. The PAW method

reduces the necessary number of PWs dramatically.[26,27]

Within the PAW framework, however, neither the PS nor the
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augmentation part can be interpreted alone, as the PAW trans-

formation is not norm-conserving.

Incidentally, eq. (16) gives the recipe to calculate the third

scalar product in eq. (14), h~plj~w jð~kÞi, just as well. The FT of

the projector functions pl is either known and directly tabu-

lated in the PAW data set, or it can be easily obtained via a

Fourier–Bessel transformation; hence, one may simply replace

v̂lð~jÞ with ~plð~jÞ in eq. (16), yielding the next required scalar

product.

This leaves us with one final expression—that which takes

care of the difference between the AE and PS partial waves

j�/ ii, again derived in the Appendix:

hvlj�/li ¼ dll0dmm0

ðrc

0

drv�lðrÞ�/lðrÞ: (17)

The integration boundaries range from the center of the

PAW sphere (where r 5 0) up to rc, that is, the radius after

which the AE and PS partial waves coincide. There, the differ-

ence function j�/ ii and hence the integrand fall to zero.

Choosing a local basis

At this point, only one step is left to obtain the coefficient

matrix Bð~kÞ: one needs to choose local orbitals and transform

them to reciprocal space. In this work, we use the functions

given by Bunge, Barrientos, and Bunge.[29]† In principle, how-

ever, the choice of basis is arbitrary, as long as the latter is able

to represent the PAW function and allows for chemical interpre-

tation. The basis set used here is minimal and contracted from

multiple primitive STOs, and so we first need an FT formulation

of STOs. Fortunately, more than two decades ago already, Belkič

and Taylor[32] derived a unified formula for STOs in reciprocal

space using the Gegenbauer polynomial. For conciseness, we

do not repeat their result but note that the FT normalization

constant of ð2pÞ23 (which is a matter of definitions) must be

excluded from eq. (21) of Ref. 32 in our case.

The pDOS and pCOOP as given in eqs. (1) and (2) are now

available. To finally carry out energy-resolved pCOHP analyses,

conversely, we still lack the Hamiltonian matrix in terms of LCAO-

COs as extracted from the PAW function. Previously,[21] we have

retrieved the projected Hamiltonian matrix HðprojÞð~kÞ via

HðprojÞ
l;m ð~kÞ ¼

X
j

T�l;jð~kÞ Ejð~kÞ Tm;jð~kÞ; (18)

but in this work, we use a basis that is not orthogonal any-

more and, accordingly, does violate the constraints of eq. (18).

Thus, a new way to regain HðprojÞð~kÞ in the more general case

of nonorthogonal bases must be sought.

Reconstructing the H matrix

Reminiscent of the Roothaan–Hall equations, the Kohn–Sham

Hamiltonian matrix HKSð~kÞ and the coefficient matrix Cð~kÞ are

generally connected by

HKSð~kÞCð~kÞ ¼ Oð~kÞCð~kÞeð~kÞ; (19)

where eð~kÞ is a diagonal matrix containing the electronic

eigenvalues and Oð~kÞ is the overlap matrix of the band wave-

functions Oj;j0 ð~kÞ ¼ hX jð~kÞjX j0 ð~kÞi which, in terms of the

(adjoint) coefficient matrix C�ð~kÞ, is

Oð~kÞ ¼ C�ð~kÞSð~kÞCð~kÞ: (20)

If we assume an ideal projection, the reconstructed band

wavefunctions jX jð~kÞi as built from the columns of the coeffi-

cient matrix Cð~kÞ are, in fact, orthonormal to each other,

because the original PW/PAW wavefunctions must be. In this

case, the overlap matrix in eq. (19) equals unity and can be

dropped.

In any case, we require that the crystal wavefunction con-

sists of at least as many band wavefunctions as there are func-

tions in the local basis. Thus, the equation system

HKSð~kÞCð~kÞ ¼ Cð~kÞeð~kÞ becomes (over)determined, and after

applying transposition identities, the Kohn–Sham Hamiltonian

can be retrieved using standard linear equation system solvers

[cf. eq. (13)]. Inserting the result into eq. (3), pCOHP analysis is

finally enabled in the new analytical framework.

Technical Aspects

Until now, we have dealt with an ideal theory, but when trans-

ferring it into numerical practice other challenges arise. With

eqs. (13), (16), and the choice of a local basis,[29,32] we have

retrieved the linear combination coefficients to further investi-

gate the properties of jX jð~kÞi. The fundamentals of quantum

mechanics postulate that band wavefunctions are orthonor-

mal, and we notice that the PAW band functions jwjð~kÞi fulfill

this requirement. By projecting onto a finite basis of AOs (or

their Bloch sums), however, it is very well possible that the

resulting projected band functions are not orthonormal. This is

easily understood by looking at the norm of a projected wave-

function that differs from unity if the local AO basis does not

fully cover the entire Hilbert space. As a consequence, essen-

tial information is lost, and it is crucial to quantify its amount

in order to justify a reasonable projection. On that route, the

so-called “spilling parameter” as introduced by S�anchez-Portal,

Artacho, and Soler[16] is easily understood, which in the nota-

tion of this work reads

SX ¼
1

Nk Nj

X
k

X
j

�
12Ojjð~kÞ

�
fjð~kÞ; (21)

with 0 � SX � 1; zero indicates an ideal projection. In practice,

the projected function will deviate from the original one,

which generally destroys normalization and hence violates the

previously mentioned orthonormality condition. Thus, the

†The basis set given in Ref. 29 is tabulated from He to Xe (and the STO

description of H is trivial, of course). If heavier atoms are to be analyzed,

we refer to the works in Refs. 30 and 31. In fact, we have tested this basis

set as well, which gave results indistinguishable from those reported

here. Koga et al., however, used a larger number of primitive basis func-

tions, which increases computational effort, so we stick to the smaller

basis given in Ref. 29 where possible.
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projected band wavefunctions need to be orthonormalized.

Multiple methods are known to do so; here, we chose

L€owdin’s symmetric orthonormalization procedure as it keeps

the functions as close to their originals as possible,[33] which

perfectly fits the needs of a projection.‡ To apply L€owdin’s

orthonormalization and simultaneously avoid numerical insta-

bilities arising in the calculation of the inverted overlap matrix,

we seek for O
1
2ð~kÞ via SVD and solve for a new set of coeffi-

cients C?ð~kÞ to represent the desired orthonormalized pro-

jected band wavefunctions as given in

C?ð~kÞO1
2ð~kÞ ¼ Cð~kÞ: (22)

In practice, we have to add another formal caveat to the oth-

erwise analytical framework presented here. Although the STOs

are analytically defined, the partial waves j�/ iðrÞi are, in compu-

tational practice, tabulated as pseudopotential parameters used

by the quantum-mechanical code. In this case, the scalar prod-

uct hvlj�/li as given in eq. (17) is conveniently computed by

numerical quadrature on the given real-space grids, making use

of interpolation routines to yield reasonably precise results. A

full analytic derivation would of course be thinkable as well, if

one had the analytic expressions for j/li and j~/li available. For

our purpose, the numerical integration is perfectly viable.

All the aforementioned projection and analytic methods

have been implemented in a standalone computer program

which processes PAW parameters and self-consistent results

from the Vienna ab initio Simulation Package (VASP);[2,34,35] we

used the latter in revision 5.2.12, together with the Perdew–

Burke–Ernzerhof-generalized gradient approximation (PBE-

GGA) exchange–correlation functional[36] and Gaussian smear-

ing or tetrahedron integration[37,38] over ~k points chosen after

Monkhorst and Pack.[39]§ All DOS, pCOOP, COHP, and pCOHP

plots were generated using the wxDragon visualization soft-

ware.[40] Unless mentioned otherwise, default parameters have

been used for the self-consistent computations and all of

them refer to energetically optimized atomic structures. For

comparison with traditional tools, the electronic structures

were recalculated using TB-LMTO-ASA theory,[41,42] using the

Perdew–Wang semilocal correction[43] in addition to the

Vosko–Wilk–Nusair local functional.[44]

It should nonetheless be noted that our methods are princi-

pally independent of the particular PW electronic-structure

code, as reading the PS wavefunction and PAW data is merely

a technical task; the chemistry happens before (in the self-

consistent computation) and afterward (in the projection and

bonding analysis). Also, the format of the wavefunctions does

not depend on the particularities of the computation such as

choice of exchange–correlation functional; the chemistry may

well do so, but this is left to the discretion of the user. In

short, any suitable PW/PAW code (or even compatibly imple-

mented methods like ultrasoft pseudopotentials) may in princi-

ple be used for analyses as they are described here.

Applications

Diamond

As a first example, we address a classical test case which has

already been the subject of our previous work:[21] carbon in its

diamond allotrope. Ahead of pCOHP analysis, we need to ver-

ify how well our projection can recover the electronic states.

We stress that we use a minimal valence-only basis, that is, the

C 1s orbital is omitted but for a good reason: it has virtually

no contribution in the energetic window under study. Follow-

ing eq. (21), our method reaches SQ ¼ 7:97% such that it spills

nearly 8% of the spectral density of the occupied subspace.

This relatively large value may be explainable by the fact that

the PAW spheres do overlap by 0.04 Å in this particular case,

rendering the assumptions around eq. (A8) in the Appendix

less than ideal. Indeed, if hard PAW potentials for carbon are

used (i.e., j�/l~T i is more contracted), the spheres become well

separated by 0.35 Å, and the charge spillage is reduced to

1.05%, thereby supporting the aforementioned assumption.

Furthermore, it is very well possible to improve the local basis

for this element. We note, however, that all results based on

the hard potentials led to pDOS, pCOOP, and pCOHP curves

that are virtually superimposable with those based on the

standard potentials, and this is why we stick to the latter in

the following. Apparently, the particular methods applied here

for chemical-bonding analysis are quite insensitive even when

noticeable spilling occurs.

For facile visual interpretation, we start our evaluation by

computing the orbital-projected DOS and summing it up over

all orbitals (C 2s, 2p) and atoms in the unit cell. Using eq. (1), the

pDOS is easily accessible, and we require that the sum of local s-

and p-projections gets reasonably close to the total DOS curve.

Recall that in methods such as TB-LMTO-ASA,[41,42] the atomic

contributions intrinsically sum up to give the total DOS but in

PW DFT this is generally not the case, not by fault of the

electronic-structure codes or their creators but due to the PW

nature itself, and this issue has been discussed recently.[45]

In Figure 1, two methods to compute the pDOS are visual-

ized, and the results are shown alongside the corresponding

total DOS. Comparing the results of the pDOS calculated in

the conventional manner, namely by projecting onto PAW

spheres as given by default program output (hereafter called

“spherical projection”), our method not only surpasses the

spherical projection, but also nearly coincides with the total

DOS, at least visually, which is a direct consequence of the

matrices leading to the pDOS curves having been reorthonor-

malized; given a successful projection they must trivially yield

‡The alert reader will have noticed that due to reorthonormalization,

higher lying states might get mixed into the occupied states and, strictly

speaking, the direct equivalence between PAW and the projected states

would be lost. And yet, the off-diagonal entries of the L€owdin matrix

(which mathematically account for the described mixing) were checked

to be smaller than 0.025 in all of the presented examples and, thus, it is

assured that the results are reasonable.

§Our preliminary implementation does not yet cover space-group sym-

metry. In other words, some of our test cases required a k point mesh gen-

erated on the complete Brillouin zone (not only the irreducible wedge) at

the present time. In the future, space-group symmetry may of course be

implemented to save computing resources.
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the correct number of electrons in total, let for numerical devi-

ations. Note that this does not guarantee a correct distribution

of the electrons over the various l channels; here, we will

probe the assignment to the carbon s- and p-levels.

So, let us compare the sum of the integrated pDOS to the

integrated total DOS. The latter equals exactly eight electrons,

trivially so because two carbon atoms contribute 234 ¼ 8

valence electrons, whereas the spherical projection yields only

5.11 electrons, losing about 36% of the spectral density. In

contrast, 7.99993 electrons are recovered by the analytical

technique of which 231:1 electrons are attributed to each s-

state and 232:9 electrons belong to p-states. This is in full

agreement with the expectations.

Let us move on and apply those bond-analytic tools we

have mentioned at the beginning of this article. In Figure 2,

the result of the COHP analysis carried out within the tradi-

tional LMTO framework has been plotted to allow for a com-

parison with the new method. All approaches shown, similar

in thought but different in technique, are in very good agree-

ment; all of them correctly identify the entire valence region

as bonding which is evidenced by positive 2COHP and

2pCOHP contributions.[13] The electronic situation is perfectly

optimized and any electronic density hypothetically added

would push the Fermi level EF up into the antibonding area

(2ðpÞCOHP < 0), thereby destabilizing the crystal. It is also

convenient that the pCOOP gives qualitatively the same result.

Gallium arsenide

As a second example, we move to another case already looked

at in our previous work:[21] the semiconductor gallium arsenide

(GaAs), structurally related to diamond, which is a similar prob-

lem yet of slightly higher complexity.

Even though the PAW spheres overlap by 0.02 Å using

standard potentials, the charge spilling arrives at a remarkably

small value of SQ ¼ 0:04% before orthonormalization. Appa-

rently, the theoretical assumptions are very reasonable and the

projection onto a minimal, valence-only basis is clearly suffi-

cient in this case.

Again, we compare the sum of the pDOS with the total

DOS in Figure 3. The latter gives exactly eight electrons as Ga

and As contribute 3þ 5 ¼ 8 valence electrons, of which the

spherical projection recovers only 5.0 electrons. The present

method attributes 2.8 electrons to Ga states and 5.2 electrons

to As which sums up to a total of 7.998 electrons (see the

above comment regarding orthonormalization).

Let us look at the chemical bonding. As seen in Figure 4,

the pCOHP analysis of the covalent GaAAs bond gives a result

that, again, is qualitatively in full agreement with the expecta-

tions. Comparing the pCOHP with the LMTO result, the bond-

ing contribution arising from the s-levels in the energetic

window between 212 and 210 eV appears slightly underesti-

mated in comparison to the LMTO reference. In contrast to

Figure 1. Left: Total electronic DOS for diamond computed using VASP. Mid-

dle: Orbital-pDOS as obtained from default routines of the PW/PAW pro-

gram. Carbon s and p contributions are indicated by red and cyan shading,

respectively. The sum of both is given by a solid line. Right: As before but,

this time, obtained from the analytical projection scheme we describe here.

In all plots, the energy zero is chosen to coincide with the Fermi level eF.

Figure 2. Chemical-bonding analysis for the CAC bond in diamond. Left:

Traditional COHP analysis performed by the TB-LMTO-ASA program. Right:

pCOOP and Hamilton populations (pCOHP), obtained with the new PW/

PAW-based method. As is convention, all plots show bonding (stabilizing)

contributions to the right of the vertical line, and antibonding (destabiliz-

ing) contributions to the left.

Figure 3. As Figure 1, but for crystalline gallium arsenide. Ga and As pro-

jections are indicated by green and orange shading, respectively. [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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our previous work,[21] the region between 24 eV and the

Fermi level is now correctly reported as an unambiguously

bonding contribution, presumably due to the improved pro-

jection technique. So, the magnitude of the 2COHPðEÞ value

shown on the horizontal axes is comparable which allows to

put even more confidence into the reconstructed pCOHP

result. Above the Fermi level EF (i.e., above the chosen energy

zero in the figure), nonetheless, we encounter an over-

weighted (compared to LMTO theory) antibonding region

above the Fermi level. The reason for the observed behavior

can be easily understood if one realizes that the AO basis

used in the present article is not defined for the empty atomic

states, for example, the Rydberg ones. Nonetheless, whatever

kind of projection of the empty bands is not a problem at all

for bonding analysis, as the integrated quantities of interest

include the occupation numbers which, of course, are zero in

the region under discussion. There are no electrons above

EF (at zero Kelvin).

Noticing that the TB-LMTO-ASA results are obtained on an

entirely different theoretical footing, we conclude that the

observed differences are not a fault of either method, but can

be attributed to their very diverse natures. In fact, there is no

fault at all, as long as both methods lead to the correct chemi-

cal conclusions. In this work, we look at the topology of the

wavefunctions as reflected in the shape of the COHP and

pCOHP curves, and the chemical-bonding nature is perfectly

captured by either choice. In the future, one might certainly

wish to improve the local auxiliary basis sets beyond the cur-

rent minimal implementation, to be able to look at subtle

energy differences in the integrated COHP and pCOHP, as well.

Titanium

As the next example of chemical-bonding analysis, we have

chosen a somewhat more challenging one: titanium, a typical

3d metal.

As we see in Figure 5, the default spherical projection rou-

tine performs remarkably well in this case and yields a pDOS

plot that, using the naked eye, is almost indistinguishable

from our result. A possible reason is that about 70% of the

electronic states in this region are of d-topology; those 3d

orbitals, much more strongly contracted than 4s- or 4p-

orbitals, are quite likely to be found within the integration

sphere used for the projection.

Using a k point grid of 93935 points without simplifica-

tions by space-group symmetry (see footnote, §), our method

recovers 7.967 electrons in the summed pDOS. Of those elec-

trons, 1.8 are attributed to s-levels, 0.7 to p-levels, and 5.6 to

d-levels. As the credibility of the projection must be validated

before orthonormalization, we again calculate the charge spill-

ing which arrives at a very low value of SQ ¼ 0:12%:

Let us now look at the bonding nature of Ti. The hexagonal

structure, as visualized in Figure 6a, contains two slightly dif-

ferent bond lengths (because Ti is almost, but not perfectly

closest-packed) of which only the shorter bond (2.86 Å) is

completely enclosed within the unit cell we have chosen. For

reasons of simplicity, we will discuss only this shortest and

strongest bond in the following.

The pCOHP of the TiATi bond, given in Figure 6b on the

right, is in remarkable agreement with the reference COHP cal-

culated with LMTO on the left; qualitatively, both curves yield

exactly the same interpretation of chemical bonding in ele-

mental Ti. There are bonding states up to and above the Fermi

level EF; assuming a rigid band model,[46] the electronic band

structure is able to accommodate more electrons (which is

exactly what happens upon moving to the right within the

3d-row of the periodic table), at least up to a certain point. If

the Fermi level is shifted upward to the region where the

(p)COHP intersects the vertical axis and thereby changes to

antibonding character, however, the ensuing electronic insta-

bility induces magnetism, which reduces the occupation of

antibonding states as analyzed in detail before.[46]

Nonetheless, very close examination of both functions

reveals small differences. According to Figure 5, the energetic

region from 26 to 24 eV contains a noticeable share of s-

Figure 4. As Figure 2, but for the GaAAs bond in crystalline gallium arse-

nide. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 5. As Figure 1, but for hexagonal close-packed titanium. Projections

onto Ti 3d (which make up the vast majority of the region near eF) are

indicated by orange shading; the sums of s, p, and d projections are shown

by solid lines. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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and p-contributions. This very region is ascribed a stronger

bonding character in the COHP (LMTO) than in the pCOHP

(PW/PAW) framework. Acclaimed by our method, conversely,

the d-state-dominated region in the direct vicinity of EF consti-

tutes a stronger part in the TiATi-bond.

What is the cause of these minor deviations? Apart from the

different quantum-theoretical approaches, there is another

aspect to be considered: to carry out pCOHP analysis, the

theory formally requires that the number of bands included in

the PAW calculation equals the number of local basis functions

used to project upon [see eq. (19)]. Within our minimal

valence basis, Ti in hexagonally closest packing gives 18 local

basis functions (333p; 134s, and 533d functions for each of

the two atoms in the unit cell). Of course, one may include 18

bands in the PAW computation (and this is exactly what we

did), however, averaged over all k points only four of those 18

bands are occupied. It is doubtful that the employed minimal

basis is able to fully reproduce the higher-lying, virtual bands,

as there, naturally, functions with higher nodality (such as the

mostly unoccupied 4p orbitals) would be required in the local

basis. An overall (i.e., including the virtual bands) spilling

parameter of SX ¼ 11:72% underlines this argument, but we

stress again that the important part of COHP interpretation

does not take place in regions high above the Fermi level and

that energy integration would omit everything above EF com-

pletely. Nonetheless, multiple possibilities to improve the local

auxiliary basis open up here, but these are subject to further

research. In this work, we deliberately stick to a minimal and

unoptimized STO basis—without orbitals unoccupied in the

atomic ground states—to demonstrate its potential and

limitations.

Beyond densely packed solids: a carbon nanotube

Until now, we have compared our results to the traditional

COHP framework, namely, the well-established tight-binding

LMTO-ASA code. In return—the reader may ask—are there sys-

tems which the latter cannot handle? There is an extremely

important class of scenarios, namely, those that include artifi-

cial vacuum spacing. This is what is routinely used for PW/PAW

simulation of nanoscale materials, countless times each day.

Of course, there are programs that do use local orbitals as

their basis in the first place—take the popular CRYSTAL[47] and

SIESTA[48] packages as two examples. Therein, no auxiliary pro-

jection is necessary and, in fact, COHP analysis has been imple-

mented into SIESTA and was used successfully many times. We

stress here that we do not want to challenge the merit of

these programs, or join a pros and cons debate on plane

waves. Instead, the goal of this article is to provide local analy-

sis for PW/PAW codes, and we believe there is good reason to

do so. As one example, Choi et al. used VASP for their simula-

tions and then SIESTA, in a second step, to carry out COHP

analyses.[49]

That being said, we turn to our next example: a carbon

nanotube. Let us first model the system at hand: an isolated

nanostructure (in contrast to the ideal crystals we handled so

far) is translationally invariant only for one dimension, namely

the one along the axis around which the surface of the tube

is extended. Consequently, in the PW/PAW framework used,

the model system needs to include sufficient vacuum perpen-

dicular to the tube axis, so that the adjacent, replicated tubes

do not noticeably interact with the original one.

Being bound to periodic boundary conditions as well, the

reference COHP code TB-LMTO-ASA would require the use of

so-called empty spheres—far too many to expect reasonable

results. Thus, we are left with chemical intuition to rationalize

the bonding situation of the nanotube. Na€ıvely, it can be

regarded as a graphite layer which, however, is wrapped and

glued together to form a tube. Fashionability of nanostruc-

tures aside, a chemist would expect its bonding nature to be

rather close to graphite: the larger the radius of the tube, the

closer the properties of the material become to graphite as

the bending distortion decreases.[5] In Figure 7a, we show a

COHP curve we have calculated for graphite, which is of

course easily accessible with LMTO or any suitable DFT code.

In Figure 7b, we illustrate the structure and the chosen unit

cell for the exemplary carbon nanotube system. In the self-

consistent PAW computation and the subsequent projection,

we used 35 k points along the tube axis in the Brillouin zone

(again disregarding symmetry) and switched to Gaussian

smearing integration with r ¼ 0:2 eV as used per default in

Figure 6. (a) Unit cell of hcp titanium (atoms inside the cell highlighted in

red) and the second-nearest-neighbor coordination environment (gray).

Note the two slightly different bond lengths. (b) COHP and pCOHP analysis

as in Figure 2 for the nearest-neighbor TiATi bond also shown in red.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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VASP. This k point grid appeared as converged as even dou-

bling its size led to indistinguishable results in the electronic

DOS. The charge spilling of SQ ¼ 8:76% is comparable to the

value retrieved for diamond, which is subject to the same

effects already discussed above; clearly, the amount of spilling

is determined mainly by the atomic species and its PAW

potentials, to a lesser extent by the particular allotrope

studied.

Comparing the DOS and COHP results for graphite in Figure

7a to the results computed with our new method in Figure 7c,

the first obvious difference is the relative smoothness of the

LMTO quantities in comparison to the “spikes” in the PAW-

based DOS and subsequently pCOHP. Such discretization, how-

ever, stems from the finite diameter of the tube (which is

ascertained by the previously shown convergence with respect

to the k-point grid size), not by whatever kind of computa-

tional artifact.

With respect to chemical-bonding analysis, graphite is the

archetype for “sp2” hybridized, quasi-two-dimensionally

extended structures. The rectangular-like part in the region

between 219 to 212 eV can be viewed as a fingerprint for

such systems, as pointed out by Hoffmann.[50] The nanotube

seems to have lost parts of this rectangular component in the

projected quantities, but such effects are to be studied more

thoroughly in the future.

Note also that the axis scaling of the pCOHP plot for the

PAW case appears unexpectedly small. This is naturally due to

a (symmetry-related) necessary averaging over all 48 bonds in

the unit cell, that is, panel c) is given in pCOHP/bond whereas

a) is given in COHP/cell.

An interesting characteristic that graphite and the nanotube

seem to share is observed in the energetic window just below

the Fermi level. Although the DOS are unambiguously greater

than zero, the (p)COHP analysis in both cases predicts non-

bonding interactions (i.e., ðpÞCOHP � 0). This would certainly

warrant further investigations which are to be reported else-

where. In summary, we see that also this class of systems is

treatable with the method presented here without hassle, and

the pCOHP is in complete agreement with intuitive

expectations.

Figure 7. (a) DOS and COHP analysis for graphite as obtained with the traditional TB-LMTO-ASA approach. (b) PW supercell setup that models a carbon

nanotube as used in this study. The boundaries of the simulation box are indicated; some atoms outside this unit cell have been added to improve visual-

ization. (c) pDOS and pCOHP analysis for this system; the pCOHP curves have been averaged over all CAC bonds inside the unit cell. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 8. (a) As Figure 7b, but for an isolated entity of the carbon allotrope C60. The two different bond lengths are schematically sketched and allude to

idealized bond orders. (b) pDOS analysis (red curve: s-levels, blue curve: p-levels) as well as pCOHP analysis for the two bonds under study. The inset on

the right is a magnified view of the pCOHP around the Fermi level. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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What about molecules? Fullerene C60

As a final example, we chose another allotrope of carbon:

C60,[51] which, in the gas phase, is a molecule; see Figure 8a.

Hence, there is no periodicity at all to consider, which is practi-

cally achieved by enlarging the simulation box around the

molecule, so that no significant interactions are possible any-

more. Because of the molecular character, the calculation is

carried out at the C point only.

As already expected from the preceding carbon-based

examples, the charge spilled in the C60 projection amounts to

SQ ¼ 8:69%, and we may safely assume a reliable analysis of

the electronic structure, once again. Indeed, Figure 8b shows

the local DOS as separated into s- and p-contributions and

reveals that all states near to the Fermi level arise from p-

levels, rather typical for the p-system.

With respect to interatomic distances, two different bonds

exist in the molecule, which may be na€ıvely regarded as

“single” and “double” bonds, sketched in accordance with

chemical intuition in Figure 8a. We carefully checked that this

distinction is also valid for the pCOHP analysis and, hence, we

show only one pCOHP curve for each kind of the bonds in Fig-

ure 8b. To further analyze the differences in the proximity of

the Fermi level EF, the pCOHP of the longer 1.45-Å bond is

magnified on the right together with the one of the shorter

1.40-Å bonds. The comparison immediately reveals that only

the “double” bond appears to be fully optimized with respect

to the electron count because only here all bonding states are

fully occupied. In contrast, the “single” bond incorporates a

nonbonding contribution just below the Fermi level and addi-

tional (but unoccupied) bonding states right above the high-

est occupied molecular orbital (HOMO). Upon evaluation of

the energy integrals of the pCOHP, we find that the shorter

“double” bond is indeed stronger (6.4 eV) than the longer

“single” bond (5.9 eV), just as expected, but this is just a first

(and rather rough) energetic estimate based on the bandstruc-

ture energy (i.e., the sum of the effective one-particle

eigenvalues).

Conclusions

We have given expressions for projecting PW DFT eigenstates onto

local orbitals of the Slater-type, and the integrals are solved analyti-

cally. The expansion to the PAW framework is derived, which makes

the projection viable for state-of-the-art PW electronic-structure

codes. Chemical-bonding analytic tools like the recently proposed

pCOHP are reliably accessible in this framework and lend them-

selves to intuitive chemical interpretation. Although the minimal

STO basis leads to appealing results and correctly conveys the

chemical message, further optimization of the local auxiliary basis

seems a rewarding target for future research. This, as well as fur-

ther studies of the bonding in more complex materials, are cur-

rently underway in our laboratory.
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APPENDIX

To rigorously derive eq. (15), we insert the Bloch sum and the

PW definition into the scalar product, given by

T PS
l;j ð~kÞ ¼ hvlð~kÞj~w jð~kÞi (A1)

¼ 1ffiffiffiffiffiffiffiffiffi
XN~T

p X
~G

CPW
j~G
ð~kÞeið~k þ ~GÞ~RA

ð
d3~r eið~k þ~GÞ~r

X
~T

e2i~k~T vlð~r2~T Þ

(A2)

¼ 1ffiffiffiffiffiffiffiffiffi
XN~T

p X
~G

CPW
j~G
ð~kÞeið~k þ~GÞ~R A

X
~T

e2i~k~T

ð
d3~r eið~k þ~GÞ~r vlð~r2~T Þ:

(A3)

Now, we replace ~r ¼~r þ ~T and use the choice of G vectors

as commonly used in PAW programs, so that ~G � ~T ¼ 2p:

T PS
l;jð~kÞ ¼

1ffiffiffiffiffiffiffiffiffi
XN~T

p X
~G

CPW
j~G
ð~kÞeið~k þ~GÞ~R A

3
X
~T

e2i~k~T þ ið~k þ~GÞ~T

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼N~T

ð
d3~r eið~k þ~GÞ~r vl ~rð Þ (A4)

¼
ffiffiffiffiffiffi
N~T

X

r X
~G

CPW
j~G
ð~kÞeið~k þ ~GÞ~RA

ð
d3~r eið~k þ~GÞ~r vl ~rð Þ: (A5)

Then, we derive the second scalar product and remember

that the functions �/lð~rÞ are zero outside the PAW spheres

around the atoms. First, we assume nonoverlapping spheres.

Second, two types of overlap integrals remain: one type,

where the PAW sphere and the basis function are located at

the same center, which can be calculated as follows:

hvmð~kÞj�/lð~kÞi ¼ N21
~T

X
~T

X
~T0

ei~kð~T 02~T Þ
ð

d3~r vmð~r2~T Þ�/lð~r2~T 0 Þ

(A6)

¼ N21
~T

X
~T

X
~T 0

d~T ~T 0

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼N~T

ð
d3~r vmð~rÞ�/lð~rÞ: (A7)

By separating the three-dimensional integral into its radial

and angular parts, we can make use of the orthonormality

relation of the spherical harmonics and write

hvmð~kÞj�/lð~kÞi ¼ d~T ~T 0 dlm

ð
dr vmðrÞ�/lðrÞ: (A8)

The second type appears when the two functions are cen-

tered on different atoms. As we deal with exponentially
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decaying basis functions, their contribution can safely be

expected to be small. Nevertheless, the integral also depends

on �/lð~rÞ, which is not normalized, such that the integral is dif-

ficult to estimate in general, and the computation of these

two-center integrals is nontrivial computationally. In a recent

related work,[20] Dunnington and Schmidt reported a method

to approximate the latter off-site integrals, which in turn for-

mally removes the boundaries of the charge spilling (i.e., SQ is

no longer delimited by 0 and 1). To avoid the latter, we

decided to neglect those overlaps completely. Our results

show that, for the purposes of the present study (namely vis-

ual interpretation of pDOS and pCOHP contributions), this

assumption is perfectly reasonable.

Keywords: chemical bonding � crystal orbital Hamilton popula-

tion � density-functional theory � population analysis � projec-

tor augmented-wave method
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