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We consider the different types of ground states of one-dimensional lattice gas of 
electrons. Interactions between electrons on the same lattice point and on neigh- 
boring lattice points are taken into account. The treatment is based on Hartree- 
Fock approximation for an unbounded system. Regions of the parameter space of the 
electron-electron interaction are found corresponding to the existence of mixed solu- 
tions (i.e., diagonal and nondiagonal long-range order are present stimultaneously). 
It is shown that the ground state of the system always corresponds to one of the pure 
types of order (only diagonal or only nondiagonal long-range order) and that diagonal 
order is present in the ground state. Conditions for the stability of the pure solu- 
tions against various perturbations are found. 

A natural strategy for the study of the properties of quasi-one-dimensional dipole-accep- 
tor crystals or polymer materials is as follows. Instead of looking for possibly more 
exact solutions of the problem for one-dimensional structure (sheets of molecules, polymer 
chains), one attempts to provide an adequate description of the interaction between sheets 
or chains, where each sheet or chain is assumed to be in a certain ordered state. For example, 
the antiferromagnetic state in Bechgard salts has been treated in terms of sheets of molecules 
in the spin-density-wave state [i]. Resonant interactions between sheets were taken into 
account and the transition temperature of the crystal into the antiferromagnetic state was 
estimated. The molecules of a polymer with continuous conjugation in the main chain and 
with free radical substituents form a state with a large spin proportional to the number 
of substituents. It is only because of resonant interactions between chains that these 
molecules (considered as a single system) can transform into the ferromagnetic state, i.e., 
form an organic ferromagnet [2]. As for the accuracy required in the description of the 
separate chains or sheets, it turns out that in quasi one-dimensional problems on adequate 
approximation for the theoretical treatment of one-dimensional structures [I, 2] and for 
the interpretation of experimental data (see [3], for example) is the one-particle representa- 
tion and the states characteristic for one-dimensional problems in the self-consistent field 
approximation (Hartree-Fock method for an infinite system). The different types of states 
are: spin-density-wave states (SW), charge-density-wave states (CW), and bond-ordering-wave 
states (BOW). In splte of much effort [4-6], the problem of describing the different types 
of states of a one-dimensional structure in the Hartree-Fock approximation is still far 
from completely solved. For example, the existence of the mixed states SW-BOW and CW-BOW 
was correctly established in [6] but the regions of the parameter space corresponding to 
these states were determined incorrectly. 

In the present paper we give a general method for determining the different types of 
states in one-dimensional systems in the Hartree-Fock approximation and we study the stability 
of these states. 

ONE-ELECTRON DENSITYMATRIX FOR POLYENE WITH BROKEN SYMMETRY OF 

THE DOUBLE PERIOD TYPE 

We consider the example of cyclic polyene (CH)N (N is even) in the q-electron approxima- 
tion. The electronic structure of the ground state in the Hartree-Fock approximation is, in the 
second quantization formalism 
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l-I + +  
= L,~h,~, t 0), k = 2:qtN,  - -  Nt2 <~ ] <~NI2, kr = ~12, ( 1 )  

Ik[<k F 

where the operators 

[ko = xk,~ako + Ykoa~o, -k = k + 2k F, ( 2 ) 

correspond to filled molecular orbitals and the operators 

fko = " a x" 
- -  Yko k~ "+" ~ o a ~  �9 (3) 

c o r r e s p o n d  t o  f r e e  m o l e c u l a r  o r b i t a l s .  In" (2 )  and (3)  a~. i s  t h e  d e s t r u c t i o n  o p e r a t o r  o f  an 
electron in state with quasimomentum k and spin projection 

a~  = N -*/~ E exp ( - -  ikn) c.~, ( 4 )  

where Cno is the destruction operator of an electron with spin projection ~ on atom n. The 
coefficients xko and Yko statisfy the condition 

Ix~o I=+ [y~.l = = I 

and can be e x p r e s s e d  in  t e rms  o f  t h e  r e a l  p a r a m e t e r s  Oke and ~ k o  

x~o = cos 0~, y ~  = sin 0~ exp (i~o). (5 )  

The o p e r a t o r s  fko and Cno a r e  r e l a t e d  try 

f~o = N -~/2 ~ (X~o + (- -  l)"yng) exp ( - -  ikn) Cno. ( 6 ) 
n 

The elements of the one-particle density matrix in the node representation have the form 

(c+oc~o> = I/2 + (-- ,)"N -~ ~ (Y~= + ;~oY~=), 
I~I<~F 

(7) 
( c+c . , a>  = N - '  ~] exp ti]e.(n - -  m)] (I xko r" -- lY~o i 2 + ( - -  1)" (x%oYko - -  Y%oXk~) }, 

Ikl<k F 

where the expectation value <...> is evaluated using (i). 

According to (7), the elements of the density matrix corresponding to a symmetry breaking 
of the double period type can be represented in the form 

(c+C,~,;> = 1/2 --F ( - -  1)n6o, (c+ac,+~) = Pa "+" ( - -  1)"A,~. ( 8 )  

Assuming that the elements of the density matrix are real, we obtain from (5), (7), and (8) 

and 

6o = ;r ~ sin 20ko cos %o, Po = N -~ V cos k cos 20ko, 
lkl<k F Ikl<kF 

Aa = N -1 ~ sin k sin 20k~ sin ~k~" ( 9 )  
[M<kF 

A n a l y s i s  o f  (8 )  and (9)  shows t h a t  a p u r e  c h a r g e - d e n s i t y - w a v e  s t a t e  ( o r  p u r e  s p i n - d e n s i t y - w a v e  
s t a t e )  c o r r e s p o n d s  t o  ~ko = 0 and a p u r e  b o n d - o r d e r i n g - w a v e  s t a t e  c o r r e s p o n d s  t o  ffkv = ~ /2 .  

MIXED STATES IN THE HARTREE-FOCK APPROXIMATION WITH EXPANDED 

HUBBARD HAMILTONIAN 

As the simplest model taking into account the effects of Coulomb interactions, we 
consider the expanded Hubbard Hamiltonian for polyene with identical bond lengths 

n,~ n 

V c~oc~o (c~+~c.+,o + c2_~oc._~p) - -  2 n  ~ C~oC~ + N71, (10) + ~'i 
n,~,p ",O 

where S > 0 is the resonance integral; Y0 and YI are the parameters of the Coulomb interaction 
between electrons on one atom and electrons on neighboring atoms, respectively; the final term 
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i:~ (~) takes into account the repulsion between posi~i ,,~ i .... ~ the v-skeleton a~A ~h~ 
next-to-last term takes into account the attraction of electrons to the neighboring ions 
of the o-skeleton. 

The equations of motion of the operators cno have been discussed in [4, 7], for example. 
Linearization of these equations with the use of (7), which corresponds to the Hartree-Fock 
approximation for an unbounded system, gives for the molecular-orbital energy 

Ek~ -= % / 2  +_ R'ko, Rk~ = [e~ + 4b~ - -  4 (b~ - -  d~) sin 2 k] u2 ( 1 i )  

and t h e m o l e c u l a r  o r b i t a l s  t h e m s e l v e s ,  a c c o r d i n g  t o  ( 5 )  and  ( 6 ) ,  a r e  g i v e n  by t h e  r e l a t i o n s  

sin 20k~ cos g%~ = e~/R~,o, sin 201~o sin ~ =. 2d~ sin le/Rao, ( 1 2 )  

were 

eo -- 21h (6a 6[.) - -  ~,0S_~, bo ---- ~ + lhP~, do = yxka. ( 1 3 )  

From (ii) the gap in the energy spectrum of the molecular orbitals at k = kF is given by 

A E o  =- 2 (e~ + 4d~/72. ( 14 ) 

S u b s t i t u t i n g  ( 1 2 )  i n t o  ( 9 )  and  c h a n g i n g  f r o m  a sum t o  an i n t e g r a l ,  we o b t a i n  t h e  s e l f - c o n s i s -  
t e n c y  c o n d i t i o n s  ( e q u a t i o n s  f o r  6o ,  &o, Po)  

6~, = (eJQo)  K (ko), A~ = (2dJQ~)  D (ko), 

Pe  = (2&,/(&) [K (fe~) - -  O (ka)], ( 15 ) 
where 

,~ A I~2. I , 2 o 2 2 2 , 2 
Qa = ~ (e'~ + -.~Gj , le-~ = 4 (b~ - -  d . ) / (4b~ -r- e~), 

and K and D are the complete eiliptic integrals of the first and third kinds, respectively. 

The system of equations (15) was used in [6] and it was found that in the approximation 
of a weak interaction (~0/~ << i, YI/~ << i) there exist only solutions of the "pure" type: 
SW (8~ = -~ = 6, Ao = 0), CW (~ = ~ = ~, A o = 0), and BOW (6 o = 0, A~ = k~ = k). It follows 
from (15) that for arbitrary values of the parameters 

Uo:Vo/fi, U~=W/fl (16) 
there exist solutions which are asymmetric in the spin indices and correspond to bond ordering 

spin density waves (BOWSW~) or bond ordering ~ spin density waves (BOWSW@) 

6 ~ = 0 ,  S ~ - O ,  AI~ = 0 ,  BO~S~;~ ; 

6~=0, A ~ : O ,  k ~ = ~ O  ~@.4s~.,~ . 

The states BOWSWa(~) are always higher in energy than states with both the amplitudes Ao non- 
zero. The solution of (15) with bond ordering spin density waves (BOSW) [6] 

c o r r e s p o n d s  t o  t h e  same e n e r g y  a s  t h e  s t a t e  BOW (~e  = O, Aa = k 8 = k ) ,  b e c a u s e  t h e  s q u a r e  
of the parameter &o appears in the expression for the energy of the chain. 

We find the regions of the parameter space (16) where solutions of the mixed type (SW-BOW 
or CW-BOW) can exist. The following conditions must be satisfied for the SW-BOW state: 

6~ =--6t~ =~ ,  A~=A~ = l ,  P ~ = P ~  = P .  (17) 
U s i n g  ( 1 6 )  and ( 1 7 )  we o b t a i n  t h e  s o l u t i o n  o f  ( 1 5 )  i n  t h e  f o r m  

P = (2U~ - -  Uo)I2U , (U 0 - -  U~), ( 18 ) 

~3"- - -  a -2  [K" (k) - -  a"-l(d o - -  U,)q,  ( 19 ) 

_X'-" : a -2 (U~qU D [a%'(g.% - -  U~): - -  teeK e (k)], ( 20 ) 
where k is determined by the transcendental equation 

K (k)/D (k) = 2UjU o. ( 21 ) 

From (21) and the inequality 1 ~ K(k)/D(k) ~ 2 we find a restriction on the parameters 
U0 and U~ : 
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Uo~2.<: U, ~ U,,. (22) 

Detailed information on the region corresponding to the SW--BOW state is found by analyzing 
the system of Cauchy-Bunyakovskii inequalities for the elements of the density matrix (8) 

0 ~ 8 ~ . < 1 / 4 ,  A~::>0, - - I ~ < P ~ A - ~ I .  (23) 

The conditions (23) replace the inexact conditions for P, A, ~ given in [6]. 

The region of the parameter space (U0, U~) for which the conditions (22) and (23) 
are satisfied corresponds to a narrow band on the phase diagram (U0, U~) which goes along 
the line Uz = U0/2 for U0, U~ << 1 and approaches the line U0 = UI for U0, U~ >> i. This 
is established by solving (19)-(21) with the conditions (22) and (23) numerically and is 
supported by the analytical method in the region U0, Uz << i. It is evident from the condition 
(22) that the SW-BOW state can exist only in the region (U0/2 ~ U~) where the CW state 
exists (and is the ground state) [5-7], Numerical calculations have shown that the energy 
of the SW-BOW state is higher than that of the CW state in the entire region where the SW-BOW 
state exists. 

A similar situation takes place for the CW-BOW state 

6~=8~=8,  A~=A~=A, P==P~ =P. 

It exists only in the region 

Uo/3 ~ U1 ~ Uo/2 

(which i s  s t r o n g l y  r e s t r i c t e d  by the  c o n d i t i o n s  ( 2 3 ) ) ,  where the  SW s t a t e  i s  the  ground 
state of the system. 

and k is given by 

(24) 

(25) 

Using (16), and (24), we find the solution of (15) for the CW-BOW state 

p (Uo_2U~)/2U~(3U~--Uo), (26) 

62 = ~-2[Ke(k)--~2/(3UI--Uo)C], (27) 

A 2 = ~-2[(4U~_Uo)U4U~][~U(3U~--Uo)~--k~K2(~], (28) 

K (k)/D (/~) = 2 u / ( 4 u ~  - Uo). (29) 

Numerical analysis of (26)-(29) and (23) shows that the CW-BOW state exists only inside a 
narrow region of the space (U0, UI) which extends along the line U I = U0/2 for U0, U l << 1 
and approaches the line U l = U0/3 as U 0, U I >>i. Analytical expressions for the region 
of existence of the SW-BOW state can be obtained in the limit of a weak interaction (U0, 
U l << I). In this case we expand the elliptic integrals K and D and keep terms proportional 
to k '2 = 1 - k 2. Then, in contrast to [3], we obtain an exponentially narrow region correspond- 
ing to existence of the mixed SW-BOW state: UA ~ U0 ~ 2UI, where UA = 2Uz[I - (4Uz/ze4)exp - 
(-2~/UI). We note that in the approximation of a weak interaction it is not possible to 
find mixed states in which SW and CW co-exist (i~ states with [6el # I68I # 0). 

STABILITY OF THE DIFFERENT TYPES OF STATES 

We discuss the stability of a given type of state against a transition into a state 
of a different type. We consider the total energy e of the system per electron (in units 
of $) as a function of the independent parameters eo, do, bo determining the type of state. 
An expression for e can be obtained in terms of the parameters of the self-consistent den- 
sity matrix: 

= - -2  V, Po + uo/4--u1 V P~ + uo6~6~ --u~ (&~ § 6~)2_ u~ _ V ~ ,  (3o) 

andthenwith the help of the self-consistency conditions (15) the energy can be written 
in terms of the variables eo, do, bo, which are the natural variables of the Hartree-Fock 
self-consistent field approximation for an unbounded system. The physical meaning of the 
parameters eo, do, b o follows from their connection (13) with the parameters of the self-con- 
sistent density matrix. 

The different types of solutions correspond to different stationary points (e~, e$, 
de, d~, b~, b~) on the energy surface e(eo, do, b~) as follows: 

s\~ (e,--e,  O, O, b, b), (31) 
C~ (e, e, O, O, b, b), (32)  
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Bow (0, O, d, d, b, b). (33) 

The s t a b i l i t y  o f  t h e  SW s o l u t i o n  a g a i n s t  a t r a n s i t i o n  i n t o  t h e  BOW s t a t e  i s  d e t e r m i n e d  by 
t h e  s i g n  o f  t h e  c o e f f i c i e n t  ~SW i n  an e x p a n s i o n  o f  (30)  a b o u t  t h e  p o i n t  ( 31 )  

e (e., da, b~) = ~ SW + ~SW d212 +"" 

The stability of the CW state against a BOW perturbation of the density matrix is analyzed 
by expanding (30) about the point (32) 

8 (eo, d~, b~) = ~ c~ + ~ c ~  V2 + "  "' 

and the stability of the BOW state to a transition into the SW or CW state is studied by 
expanding (30) about the poimt (33) 

8 (eo, do, bo) = ~ Bow + ~ s d  :/2 + .... 

e (eo, d . ,  ha) = e Bow + ffcw e2/2 + " "  

In these expansions 

1 [ 4  ] / - ~  + e = 
~SW= 4b 2 + e ,~ ~ b 

- -  8UI (iD -- K) (K - D) -? % K (K-- D) 8UI (iD -- K) -? T ~2 --Di] (34) 

where the elliptic integrals are evaluated at the point 

k2 = 4bi/(4b ~ + e~), 

and the expression for DCW is obtained from (34) with the substitutions U0 + 4UI - U0; 

t~sw=q3z---~-D+ ~: --~2 + =--&T@--~ : + 2 - i _ k 2  D ~ (3s) 

The elliptic integrals in (35) are evaluated at the point k 2 = i - di/b 2, and ~CW is obtained 
from (35) with the substitution U 0 + 4U I - U 0. Study of the signs of the expressions ~SW and 
&~CW in the limit U0, Uz << 1 shows that in the region corresponding to the SW state (U I 
U0/2) this state is stable against a transition into the BOW state and in the region correspond- 
ing to the CW state (Uz ~ U0/2) the SW state is unstable against a transition into the BOW 
state. In the same way, in the region corresponding to the CW state (U l 7> U0/2) , this state 
is stable against the BOW state, while in the region corresponding to the SW state (Uz~ U0/2 ) 
the CW state is unstable against a transition into the BOW state. A study of the signs of 
~SW and ~CW shows that the BOW state is always unstable; in the SW region it is unstable 
against a transition into the SW state and in the CW region it is unstable against a transi- 
tion into the CW state. We did not analyze the stability of the'mixed states SW'BOW and 
CW-BOW. We established only that they are always higher in energy than the SW or CW states, 
which are the ground states in the corresponding regions of the parameter space (U0, Uz). 

It would not be correct to assume that only the stable states with the lowest energies 
are of interest and can be compared with experiment. The minimum-energy principle for an 
isolated cyclic chain leads to a high-symanetry exact solution of little interest. The diversity 
of the properties of real systems (states with spin density waves, charge density waves, 
and so on) is due to additional interactions (the effects of the ends, substituents, and 
neighboring molecules; interactions between molecules belonging to the same chain, and so 
on). Certain types of such external periodic fields can be taken into account in the Hartree- 
Fock approximation for an unbounded system by means of a self-consistent perturbation of 
a certain symmetry and type. Therefore, the types of solution in the Hartree-Fock approxima- 
tion for an unbounded system provide a basis for more complicated theories and for the inter- 
pretation of the experimental data [1-3]. 

Study of the stability of pure states in the Hartree-Fock approximation against different 
types of perturbations of the density matrix shows that near the boundary of the SW-CW transi- 
tion the pure states are unstable against a BOW perturbation in the limit U0, Uz << I. In 
real systems a perturbation of the BOW type is always carried in by the ends: at the ends 
of a polyene chain bond ordering is always higher than the average value in the chain. Hence 
even when U0, Uz % 1 [8], the real state is mixed near the ends. 
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P 

//I'" Fig. i. Regions in the (U0, U l) plane cor- 
responding to the existence of solutions of 
the equations of the Hartree-Fock method 
with mixed types of long-range order: i) 
Ui = U0; 2) U I = U0/2; 3) U I = U0/3; the 
narrow shaded regions correspond to mixed 
solutions: SW-BOW for U l > U0/2 and CW-BOW 
for U I < U0/2. 

We have also established that near the SW-CW boundary use of the leading logarithmic 
terms in the expansions of the elliptic integrals in (15) does not give a correct descrip- 
tion of the solutions in the Hartree-Fock approximation for U0, Ul << 1 and higher order 
terms in the expansions must be taken into account. Hence a small external perturbation 
can strongly affect the type of state. Only when the higher-order terms are included are 
the mixed states SW-BOW and CW-BOW observed near this boundary; the energies of these mixed 
states approach the energies of the pure SW and CW states in the region U 0, U I + 0. When 
U0, Ul > 1 the region corresponding to these mixed states is also very narrow and their 
energies become much higher than the energies of the pure states, which also shows up in 
the numerical calculations described above. 

The existence of a narrow region near the SW-CW boundary implies that there are converg- 
ence problems with the self-consistency procedure in the Hartree-Fock approximation (see 
[7])~ Such a region showed up near the boundary U I = U0/2 in a Monte-Carlo study [9] of 
the phase diagram of a short (N = 32) chain using a Hubbard expandedHamiltoniano It was 
shown in [9] that for small U0, U l the transition SW ~ CW is smooth with respect to the 
parameters U 0 and Ul, whereas the transition becomes sharp for large U0, U I. For large 
U0 and U I (Fig. I) there are no mixed states close in energy in the Hartree-Fock method 
near the boundary U I = U0/2. Their existence in the region U i, U0 << i is explained by the 
fact that spin ordering in [9] persists above the boundary UI = U0/2 into the CW region. 

Finally, we note the effect of bond length alternation on certain types of solutions 
in the Hartree-Fock method. For example, in the case of polyene the energy per electron 
takes the form [4] 

= ~0 --~'~ V d~ + Ka~12, (36) -/ 

where $ >0 is the displacement of the nucleus from its initial equibonded position, ~' = 
18~/851 > 0, Ko is the elastic constant of the o-skeleton, and the quantity a 0 is given 
by (30). It follows from (36) that bond length alternation removes the degeneracy of the 
BOW and SWBO states: the energy of theSWBO state (Aa = -AB) obtains a purely positive cor- 
rection Ko$2/2, while the energy of the BOW state obtains the negative correction -2~'A$. 

The authors thank V. Ya. Krivnov for useful discussions. 
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SPECTRAL AND SPIN DIFFUSION IN STATIONARY SATURATION OF ESR SPECTRA 

OF PARAMAGNETIC CENTERS 

V. V. Kurshev, A. M. Raitsimring, 
and Yu. D. Tsvetkov 

UDC 541.143:547.962 

Theoretical and experimental approaches have been taken in a study of the feasibil- 
ity of using the method of stationary saturation of ESR spectra in studying pro- 
cesses of dipole relaxation of paramagnetic centers in magnetically dilute solids. 
In the example of a system consisting of two kinds of paramagnetic centers, relaxa- 
tion characteristics have been formulated by the stationary saturation method and 
the electron spin-echo method. It has been established that, with certain limita- 
tions and the use of a correct workup of the experiment, the stationary saturation 
method can be applied successfully in determining the relaxation characteristics 
of paramagnetic centers and features of their spatial position. Results obtained 
by this method are discussed in the example of systems in which electron-nucleus 
interaction makes a substantial contribution to the phase relaxation process. 

In electron paramagnetic resonance (electron spin resonance, ESR), both stationary 
and pulse methods are used in measuring the relaxation characteristics of paramagnetic cen- 
ters [1-4]. Among the stationary methods, extensive use has been made of the stationary 
saturation method, in which measurements are made of some particular characteristic of an 
ESR line F (area, amplitude, or amplitude of first or second derivative) as a function of 
the strength of the SHF (microwave)field Hi in the resonator of the spectrometer. The 
relaxation parameters of the spin system are determined by subsequent treatment of the satura- 
tion curve F(HI). Methods for working up the saturation curves, based on a model of non- 
interacting spin packets of the Lorentz form [5], were developed in [6, 7]. As a result 
of processing the curves, the transverse and longitudinal relaxation times are found. 

The sources responsible for transverse and longitudinal relaxation in magnetically 
dilute solids have been investigated in considerable detail [8-10]. Among these sources 
are spin-lattice coupling, modulation of dipole-dipole (d-d) coupling between electron spins 
by random turnovers due to spin-lattice coupling or mutual flip-flops (spectral diffusion 
SD in "type TI" or "type T2" specimens [8]), random modulation of electron--nucleus spin-spin 
coupling due to spin diffusion in the system of nuclear spins, and transfer of spin excita- 
tion between electron spins (SpD). In stationary saturation, each of these processes is 
assumed to be characterized by a single phenomenological parameter, i.e., the correspond- 
ing relaxation time; and the overall rate (reciprocal time) of transverse or longitudinal 
relaxation is taken as the sum of the rates of the individual processes. 

In application to a pulse experiment , the model of noninteracting spin packets assumes 
an exponential law of decay of longitudinal and transverse magnetism: exp(-t/T1) andexp(-t/T2). 
However, studies of relaxation processes in magnetically dilute solids [i0] have shown that 
by no means all of the processes giving rise to transverse and longitudinal relaxation will 
lead to an exponential law of decay. Therefore, a problem arises in describin~ correctly the 

Institute of Chemical Kinetics and Combustion, Siberian Branch, Academy of Sciences of 
the USSR, Novosibirsk. Translated from Teoreticheskaya i Eksperimental'naya Khimiya, Vol. 
25, No. 5, pp. 520-528, September-October, 1989. Original article submitted November Ii, 
1981. 

0040-5760/89/2505-0481512.50 �9 1990 Plenum Publishing Corporation 481 


