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We consider the electronic structure of a linear chain of carbon atoms in the 
q-electron approximation. We determine the values of the parameters for which 
different the values of the parameters for which different types of states with 
broken symmetry are the ground state. We compare our results with the results 
of other calculations and with experiment. 

Recently various modifications of carbon have been obtained, many of which (see the 
review in [i]) are considered as crystals consisting of chains of carbon atoms of different 
lengths. In a number of cases [i], the differences between the modifications are connected 
with the difference between the polyyne structure ((-C~)N) and the cumulene structure 
((=C=)N) , although such an interpretation is ambiguous. 

The electronic structure of karbin as N § = was calculated previously in different 
approximations [2-7]. Examination of this problem in the v-electron approximation in a 
simplified variant of the restricted Hartree-Fock (RHF) method [2, 3] led to the conclusion 
that there exists weak alternation of bond lengths in the chain. Calculations in the ex- 
tended Huckel method (EHM) and CNDO/2 led to the same conclusions [5, 6]. 

In [4], the karbin molecule was considered in the ~-electron approximation in terms of 
the unrestricted Hartree-Fock (UHF) method, taking into account the interaction of electrons 
found on the same carbon atom. It turned out that the state correspondingto alternation 
of the spin density in the cumulene case (as in the polyacetylene case) lies lower in energy 
than the RHF state. The possibility of alternation of bond lengths was not considered in 
[4]. Therefore the question concerning the type of ground state remains open. In polyene 
(CH) N with N + =, taking into account the interaction of electrons found on adjacent carbon 
atoms (the parameter YI in formula (i)) leads to the need to consider states with alter- 
nating bond order (BOW) or alternating charge densities (CDW). States of the CDW type in 
karbin were considered in [7] in terms of a nonempirical calculations in a minimal basis. 
Let us consider a chain of N carbon atoms with cyclic boundary conditions in the ~ approxi- 
mation with the Hamiltonian 

E 
~Ci~U t 

//= _ ~ a + + [~n,n+l ( ne(tn+l~ + b~b, ,+a.  + H . c . )  + 
7L,(~ 

% ~]  ra+  a + - + + ' + 
t .~  ~ a ~  + b ~ b ~ b n ~ b ~ ]  + ~o :~ + an~a~b i~a , bn o , 

n ~,U,O" 
r 

[n,O 

(anabnobna,ane, + + + J- 
n,fs,(y ! 

+ + + b+_lo, b ._ to ,  )]  

' (bn+la,bn+~,  + v- ~ n~ [an+la,an+lo, + b~- l~ ,b~- t~ , )  ' b + b I + 

Ka 
+ an- lo , ) ]  2 ( y 1 + ? ; ) X ( a + o a n o + b + o b n o ) + - ~ - X ~ n , , , + l "  an--la' -- 2 (1) 

In approximation (i), ano and bno are the electron creation operators at C atom with number 
n, spin projections o = m, ~ in a and b subsystems, consisting of respectively the 2Px and 
2py atomic orbitals (AO) of the carbon (the z axis coincides with the molecular axis of the 
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karbin). The first term in (i) is the resonance interaction of electrons in subsystems a 
and b. The resonance integral 6n,n+1 = 60 + 6'$n,n+l depends on Sn,n+~ = (-l)n$, the dis- 
tortions in the C-C bond length and the 6' derivative of the resonance integral with re- 
spect to the distance between the C atoms. The second and third terms describe the Coulomb 
repulsion of the electrons on the same atom in the same and in different subsystems respec- 
tively. The fourth term represents the exchange interaction of electrons of different sub- 
systems on the same carbon atom. The fifth and sixth terms are the Coulomb interaction of 
electrons on adjacent atoms of the chain in the same and in different subsystems respectively. 
The next-to-last term describes attraction of electrons to the core of adjacent carbon 
atoms. The last term is the elastic energy of the o core. In order to determine the eigen- 
functions of Hamiltonian (i), let us make use of the equation of motion method [4, 8]. Let 
us take the averages over the ground state: 

1 <a+oa~o> = -~- ~- ( - -  1) n 6~(~, 

i 
<b~+ob~> = - ~  + (-- 1)~ ~o, 

<~o~+1o> = Pa~ + (-- t)~ Aoo, 
<b~%b~+~> = P ~  + (-- 1)~ ~ ,  

(2) 

where 6Xo, bla, PAo are the parameters of the density matrix. Such a form for the averages 
corresponds to doubling the period of the solutions, compared with the perod of the original 
chain. The spectrum of the one-particle states will be 

l (3) 

where X = a, b is the subscript of the subsystems a and b, 

eaa = - -  [ " l ?o6~,-o + (7'0 - -  2Y~) (Sb~ + 5b~) ~o -- Yo 6b~ - -  2"~z ( 6 ~  + 6~)  , 
2 (4) 

b ~  = [3 o ~- ? I P ~ ,  

dao = I~' ~ + 71A~o. 

The one-electron spectrum has a gap for k = k F = ~/2 

AE~o = 21/-d.,, + 4dD. (5) 

The e x p r e s s i o n s  f o r  s u b s y s t e m  b a r e  o b t a i n e d  by  i n t e r c h a n g i n g  t h e  s u b s c r i p t s  a and  b .  

The self-consistency conditions for the parameters of the density matrix (DM) intro- 
duced into (2) have the form 

e ~  K (k~a), 

2d~,a 
A~o = ~ V eL + 4bL D (k~o), 

(6)  
2b~a (K (kxo) -- D (k~a)), 

e~a + 4b~.a 

k ~  = 4 (bL - d~o)/( do  + 4b~o), 

where K and D are the complete integrals of the first and third kind respectively. 

The self-consistency cndition for ~: 

r e p r e s e n t s  t h e  " b o n d  l e n g t h - b o n d  o r d e r "  f o r m u l a  f o r  k a r b i n .  

(7) 
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The trivial solution for the system of equations (6) and (7) (or the RHF solution for a 
chain of equal bonds) has the form: 

P ~  = ~/~, 5 ~  = A ~  = ~ = O. 

This solution, without a gap in the one-electron spectrum, coincides with the solution of the 
simple Huckel method: plane waves. 

All the solutions to system (6) with doubled period of the chain can be separated into 
symmetric and antisymmetric solutions relative to rotation by ~/2 about the molecular axis. 
In the symmetric solution case, the phases of the charge density waves (CDW), the spin den- 
sity waves (SDW), and the bond order waves (BOW) coincide in subsystem a and b. We will 
designate these solutions as in-phase waves: SDW/+, CDW/+, BOW/+. In the antisym~etric 
solution case, the waves in subsystems a and b have opposite phases. We will designate such 
solutions as out-of-phase waves: SDW/-, CDW/-, BOW/-. 

Let us consider the system of equations (6) and (7) for ~' = 0. In this case, all the 
self-consistent solutions have identical wavelengths (~ = 0). The energy of the karbin (here 
and later, calculated per electron) is determined by the expression 
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where 8Xo, &Xo and Pie are the solutions to the equations in (6). The expressions for the 
energy in different types of states will be 
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where 

P = P ~ ,  A=I&ol, 5 = 1 6 ~ f , ,  

3 
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We will not consider here other solutions to system (6) (for example, in-phase and out-of- 
phase spin density waves for the bond order, or solutions with different types of ordering 
in different subsystems). 

For 6' ~ 0, we will have $ # 0 and the energy of the karbin is is determined by the 
expression 

Ko (i0) 

where ~ and &ko are the solutions to the self-consistency equations (6) and (7), while E 0 is 
determined by formula (8), in which the MP parameters are also determined from (6) and (7). 

In [9, i0], it was shown that in large systems, as a result of electron correlation 
effects the interelectron interaction is renormalized so that the two-center Coulomb integrals 
Ym,n increase exponentially with the separation between the centers, going to the constant yiN o 
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If we take into account the fact that the PPP Hamiltonian allows for one more renormaliza- 
tion: ?0 = 711--?IN, 71~ 71~--71.N,.. [ii], then, using the values of Ymn from [I0], we find 
that the one-center parameter Y0 has the value 5.5 eV, while YI = Y[ = 2.5 eV. The resonance 
parameter 80 was determined as in the PPP method: 80 = 2.371"S(1.30)/S(1.397) = 2.78 eV, 
where S is the overlap integral for the z-AO's. The energies in the states with ~ # 0 are 
determined by the parameters 6' and K o. Let us set K a = 48 eV/~ 2, which practically coin- 
cides with K o in polyacetylene. Such an approximation is reasonable, since first of all the 
parameters of the o zones, determined from the Auger spectra, are close in polyacetylene and 
karbin [12]; and secondly, in the calculation of the structure of diacetylene by the Huckel- 
Lennard-Jones method with self-consistent determination of the bond orders and bond lengths 
we found [13] that the parameter ~ = 2~'/K o = 0.15, which is close to the corresponding 
value ~ = 0.18 in polyenes. Such a decrease in m is not so great as assumed in [2], and 
corresponds to a decrease in 6' down to the value 6' = 3.6 eV/~ with unchanged K a. 

Among the states with ~ = 0, the SDW/+ state has the lowest energy if y~ > 471 - ~0. 
Otherwise, CDW/+ has this energy. As is evident from formula (5), all the states with al- 
ternation of spin density, charge density, or bond order have a gap in the one-electron 
spectrum. For y~ = 4.65 eV, the gap in the one-electron spectrum for the SDW/+ state is 
AE = 1.18 eV. For K o = 48 eV/~ 2 and 6' = 3.6 eV/~ 2, the energies of the BOW/+ states with 

~ 0 are lower than the energies of the SDW/+ states if Yz > 2.0 eV. For Yz < 2.0 eV, 
the conclusion in [4] that the ground state of cumulene is the SDW/+ state remains in force. 
For Yz = 2.5 eV, in the BOW/+ state the bond length length alternation parameter is ~ = 0.06 
~, and the size of the gap in the one-electron spectrum is equal to 1.91 eV, which is signif- 
icantly greater than the experimental value of 1 eV [12]. The magnitude of the alternation 
parameter that we obtained is significantly smaller than in the nonempirical calculation in 
[7] (~ = 0.13 + 0.01 ~), and in the all-valence CNDO/2 calculation in [6] (~ = 0.15 ~). 
Despite the large difference from experiment, the size of the gap we obtained for the BOW/+ 
state is much closer to the correct value than the results in [6, 7] (AE = 14 eV). The 
agreement between the calculated size of the gap for the SDW/+ state and experiment is not un- 
ambiguous evidence in favor of a SDW/+ ground state, since in our calculation we can find 
only a ~-elecron gap, while the experimental value may be determined by (~ - o*)-transitions 
[12]. 

The greater tendency of cumulene toward bond length alternation compared with polyene 
is explained by the fact that for practically identical contributions of elecron correlation 
to the total energy per electron in cumulene, containing two ~ bonds on each pair of C atom, 
the contribution form ~ electrons to the deformation energy (-4~'$A) is two times greater than 
in polyene (-2~'$A) with a single ~ bond on each pair of C atoms. Therefore, for the same 
value for the stiffness Ko of the core, for cumulene the BOW/+ state has a greater gain than 
for polyene. 

In conclusion, the authors express their deep appreciation to Yu. P. Kudryavtsev, I. V. 
Stankevich, M. B. Guseva, and V. V. Khvostov for their attention to the work and valuable 
discussions. 
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