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ABSTRACT rn 

A series of the d 6  iron(I1) complexes with bulky organic ligands (like [ Fe(bzpy),(NCS),]) 
can exist in two spin forms: in the low-spin ( S  = 0) form at low temperature and in the 
high-spin ( S  = 2) form at high temperature. In the crystal phase, the transition between 
these two forms may be either smooth or abrupt. Recently, the abrupt spin transitions 
were identified with the first-order transitions between different ordered phases occurring 
in the binary mixtures of the two spin forms of the complex. Here, we apply the method 
widely used in the field of binary metal alloys to the analysis of the spin transitions. The 
molecules undergoing the spin transition are modeled by octahedra of variable size 
which interact when they are immediate neighbors in the crystal lattice. We show that 
some simple assumptions concerning the intermolecular interaction and crystal geometry 
relaxation allows one to get the desired first-order phase transitions together with a 
satisfactory description for the crystal compressibility as a function of temperature. 
0 1996 John Wiley & Sons, Inc. 

Introduction 

pin transition in the transition-metal com- S plexes are known already for more than half 
a century, but only starting early 1960s did intense 
studies begin. Today, dozens of compounds are 
known which exhibit spin transitions under proper 
conditions. Largely, they are complexes of transi- 
tion metals with the electronic configuration d4, 
d5, d', and d7 [l]. These compounds can have both 

a high-spin (HS) and low-spin (LS) central ion. For 
example, the d 6  complexes of Fe( 11) can have both 
the ground-state spin 2 (HS) and 0 (LS). What spin 
form a complex actually acquires depends on the 
ratio of d-level splitting in the ligand field (lODq), 
which in its turn depends on the details of the 
ligand environment of the central ion and the 
average energy of the Coulomb interaction of d- 
electrons ( P )  which is less sensitive to the environ- 
ment [l-41. If lODq >> P (strong ligand field), the 
ground state is LS; if 10 D9 a P (weak ligand field), 
the ground state is HS. If, however, 1ODq = P 
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(i.e., we are in the proximity of the break on the 
Tanabe-Sugano diagram), then even for slightly 
different geometries of the ligand environment, 
the central ion can have the ground states of differ- 
ent spin. In this case, the difference between the 
energy minima of the corresponding HS and LS 
terms becomes comparable to k,T. Under these 
conditions, both the states will be populated [i.e., 
some fraction 0 < x < 1 of all the molecules is in 
the HS state and the rest (1 - x )  in the IS state]. 
The fraction of the molecules in the different spin 
states is defined from the thermodynamic equilib- 
rium conditions and depends on temperature and 
pressure. The processes where under variation of 
temperature (or pressure) the fraction of the 
molecules of different spin changes is called a spin 
transition. 

Numerous experimental studies revealed three 
major types of the x ( T )  curves: They can (1) in- 
crease smoothly with the temperature increase, (2) 
undergo an abrupt increase at some critical tem- 
perature T,, and (3) exhibit hysteresis, i.e., undergo 
the abrupt changes of the HS fraction at different 
temperatures depending on the way the transition 
is induced-by heating the LS crystal or by cooling 
the HS crystal. The variation of the fraction of the 
HS molecules is accompanied by the variation of 
other thermodynamic parameters. For example, at 
T, of the spin transition, the volume of the crystal 
abruptly changes (though the crystal structure as a 
whole except the lattice parameters is conserved) 
and the specific heat diverges. [l-41. All these data 
suggest that at least the curves of types (2) and (3) 
correspond to some phase transitions. The finite 
volume change and the hysteresis in the spin tran- 
sitions suggest the first order of the phase transi- 
tion for the concentration curves of types (2) 
and (3). 

For the spin transitions in the solid state, nu- 
merous phenomenological theories have been pro- 
posed which result in the first-order phase transi- 
tions [5-81. The assumption concerning a specific 
intermolecular interaction making the molecules in 
the same spin state occupy the nearest-neighbor 
sites in the lattice is a general feature for all these 
models. The original Slichter-Drickamer (SD) 
model 151 proposes, eg., the following form of the 
crystal free energy: 

where Sh and Ss are the parameters characterizing 
the spin transition in a separate molecule [l-41 
and the positive r is a phenomenological inter- 
molecular interaction parameter. The SD model 
manifests a first-order phase transition with an 
abrupt change of the fraction x of the HS isomer if 
2 2k,T,, where the critical temperature of the 

spin transition satisfying the condition x(T,) = 1/2 
is defined by the intramolecular parameters of the 
transition T, = ah/&. 

The microscopic intermolecular interaction re- 
sponsible for the positive sign of r is called coop- 
erative. However, its existence has never been un- 
derstood from the point of view of the microscopic 
properties of the constituent molecules. Moreover, 
it has been shown in 191 that (1) in the unrelaxed 
lattice the intermolecular interaction is anticooper- 
ative, i.e., the molecules having the same spin try 
to avoid each other, and (2) the cooperativity of an 
interaction is not necessary since even with the 
anticooperative [lo] interaction between the 
molecules in the crystal the spin-phase transition 
of the first order is still possible if the free-energy 
function for the crystal has the form 

where 

is the SD free energy, but with the negative interac- 
tion and the term 

with y = x/(l - x),  describes the sublattice order. 
However, neither in [9] nor in the earlier works 
[6-81 admitting the possibility of sublattice forma- 
tion in the spin-transition systems, the reasons for 
their formation were not given and the parameters 
characterizing sublattices such as s-the ratio of 
the numbers of sites in different sublattices were 
not estimated. The purpose of the present work 
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was to analyze the conditions when it is possible 
to have cooperative and anticooperative signs of 
the interactions between the constituent molecules. 
We also consider the elastic properties of the crys- 
tal undergoing the spin transition and make an 
approach to the problem of determination of the 
sublattices in a regular way accepted in the theory 
of binary alloys. 

Model 

SPIN-ACTIVE MOLECULES 

The major part of the body of experimental data 
concerning the spin transitions is obtained on the 
six-coordinated molecular complexes of Fe(I1) with 
bulky organic ligands containing nitrogen as a 
donor atom (like bipyridyl, phenantrolin, NCS- 
anion, etc.). For describing the spin transitions on 
the molecular level, we present each molecule of 
an iron(I1) complex undergoing the transition as an 
octahedron formed by the central Fe(I1) ion sur- 
rounded by the six point ligands placed on the 
octahedron axes. As is evident from its name, the 
spin of the central ion changes when the spin 
transition happens. This change is possible only 
due to change in the positions of surrounding 
ligands. The distances Fe-N increase in the mo- 
ment of the transition and, respectively, the crystal 
field (the value of 1ODq) decreases and the HS state 
becomes the ground state of the molecule. All the 
remaining interatomic distances in the crystal stay 
unperturbed by the spin transition. Within our 
approach, we model this feature by introducing 
the variation of the metal-point ligand distance 
6r,,, > 0. This distance is R in the LS state and it is 
R + 6r,, in the HS state. 

CRYSTALS FORMED BY THE MOLECULES 
OF ONE TYPE 

Now we consider a simple cubic crystal formed 
by the octahedra introduced just above. We as- 
sume that the axes of the octahedra are directed 
along the three axes of the simple cubic lattice. The 
crystals formed by such molecules are held to- 
gether by the van der Waals forces. It is reasonable 
also to assume that the intermolecular interaction 
is due to the ligand-ligand interaction extended to 
the nearest-neighbor ligand along the crystal axis. 
We assume that the interaction energy is a 
quadratic function of the intermolecular separa- 

tions between the closest ligands of the neighbor 
molecules: K ( Y  - d) ’ /Z,  where K is a force con- 
stant and d is the equilibrium (van der Waals) 
distance between the ligands in the neighbor 
molecules. One can easily check that the compress- 
ibility (reciprocal bulk modulus) of such a crystal 
is given by K;; = 3 a / ~ ,  where a is the lattice 
constant of the crystal at zero (ambient) pressure 
and a = d + 2 R, where R is the distance between 
the central ion and the point ligand in the LS 
complex. The equilibrium lattice constant for 
the crystal formed by the HS molecules within 
our model is a + 2 6 r H L ,  and its compressibility 
K;: = 3(a + 2 6 y H L ) / ~ .  

CRYSTALS OF BINARY MIXTURES OF 11s 
AND LS ISOMERS 

Mechanical  Energy 

Let us consider now the mechanical potential 
energy of the crystal formed by a mixture of the HS 
and LS molecules. To do so, we [111 introduce the 
occupation number operators a,(r) for the lattice 
sites. The aj(r) equals 1 if the r-th site of the lattice 
(r is a triple of integer numbers) is occupied by the 
molecule of the i-th type. In our case, when we 
have two types of the molecules (LS and HS), i = 0 
or 1, respectively. The mechanical potential energy 
of the crystal then has the form 

where a = x ,  y, z ;  G is the unit vector in the direc- 
tion a; and W,y,(r) is the potential energy of the 
interaction between the closest ligands of the 
molecules occupying the sites r and r + &. Accord- 
ing to our assumption concerning the intermolecu- 
lar interaction, it is equal to ( K / ~ X Y ( Z ,  i t ,  r, a) - 
d)’, where 

r(i, i t , r ,  a)  = a - ZR - ( i  + i t )  6 r H L  

+ A + u,(r + 6) - u,(r). 

Here, u,(r) is the a-th component of the shift of 
the molecule in the r-th site as a whole from its 
equilibrium position, and A, the uniform elonga- 
tion of the parameters of the all unit cells. After 
taking into account the relation between the LS 
equilibrium lattice constant a and the equilibrium 
interligand separation d, the potential energy as- 
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sumes the form 

Now, we introduce the average fraction of the 
molecules of the i-th type in the lattice according 
to 

( 3 )  ci = (I/N) c ai(r) 
r 

and the local deviations of the occupation numbers 
at the r-th site yi(r) according to 

aii(r) = ci + yi(r). ( 4 )  

Provided that the terms higher than second overall 
order in u’s and y‘s are vanishing and that the 
molecular shifts and the occupation number devia- 
tions comply with the conditions, 

c u,(r) = 0; c yi(d = 0, 
r r 

the expression for the energy takes the following 
form: 

Here, we passed to the Fourier transforms both for 
the shifts and for the local fraction deviations: 

denoted the average fraction of the HS molecules c1 
by x and c,, = 1 - x ,  and also mentioned that 

We see that the overall fraction of the HS 
molecules and the uniform deformation enter to- 

r; = -r; = r,. 

gether the first term of the above expression for 
the mechanical potential energy, whereas the terms 
concerning the local lattice distortions coupled with 
the local fraction deviations are decoupled from 
the overall fraction/uniform deformation term. It 
is also worth noting that within the proposed ap- 
proximation the acoustic phonon spectrum re- 
mains unchanged irrespective to the fractions of 
the component HS and LS molecules. The only 
effect on the phonons that could be expected on 
the basis of the proposed approach is the slight 
modification of the libron spectrum due to differ- 
ence of the inertia moments of the LS and HS 
isomers. We, however, do not consider here the 
libration degrees of freedom. 

Compressibility 

Let us assume for a moment that the local terms 
containing U: and rk are not important and con- 
sider the global first term in the mechanical en- 
ergy. It allows us to write down the Gibbs energy 
for the crystal undergoing the spin transition in the 
following form: 

g = G / N = ( S h  - T 6 s ) x  
+ k , T ( x  In x + ( 1  - x ) l n ( l  - x ) )  

+ 3 ~ / 2 ( A ’  - 4 A  Sr,,x 

+2 6 r i , x ( l  + x ) )  + p ( a  + A)3. (6)  

The equilibrium values of x and A are to be 
determined for each value of T and p from the 
standard thermodynamic relations: ag/d x = 
d g / d A  = 0. 

Before passing to the equations determining the 
XU), we consider the compressibility of the crystal 
formed by the molecules undergoing the spin tran- 
sition. According to the general definition, the 
compressibility is given by 

Both x and A are defined by the above equations 
as the implicit functions of p and T :  

d g / d x  = ( 6 h  + 6~ 6 r i L  - 7’6s) + k , T x / ( l  - x )  

- 6~ 6 r H L ( A  - 6r , , x )=0 ,  

d g / a A  = K ( A  - 2 x  6 r H L )  + p ( a  + A)’=O. (7) 
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Making use of the standard relations for the im- 
plicit functions, we get for the compressibility at 
p = 0 (ambient pressure) 

3 ( a  + A )  
K - ’  = 

K 

or after introducing the characteristic temperature 
related to the intermolecular interaction 2 kBT, = 

3K 6rL,, 

3 ( a  + A )  T + 4Tix(l  - x )  
K - ’  = . (8) T - 4 T i x ( 1  - X )  K 

From Eq. (71, we can also find the relation between 
the equilibrium values of A and x :  

A = 2 x  8r,, - pa2/K = 2 x  6 r H L .  (9) 

For the crystals composed of the molecules of 
one type ( x  = 0 or x = l), we get just the above 
results for K i ;  and K,;, respectively. At the 
critical temperature of the spin transition at which 
x (T , )  = 1 / 2  holds, we get for the compressibility 

The compressibility is obviously larger for the in- 
termediate composition and has a maximum at the 
critical temperature when the fractions of the two 
components are equal. This feature is in a perfect 
agreement with the recent experimental findings 
[ 121. The compressibility diverges and becomes 
negative if T, I T , .  

Concentration Curves x ( T )  

Let us consider now the equation for x(T 1. First, 
we study the case of the unrelaxed lattice with 
A = 0, which is possible at high pressure. Then, 
the Gibbs energy takes the form 

cy = (811 + 6~ 8r,& -- T 8 s ) x  

+ k , T ( x  In x + (1 - x)ln(l - x)) 

- 3~ 6r,?j,x(I -- X I ,  ( 1 0 )  

which corresponds to the anticooperative interac- 
tion between the molecules of different spin. For 
this situation, it has been proposed in 191 to con- 

sider the sublattice order (see below) to describe 
possible first-order spin transitions. 

Consider now the case of vanishing (ambient) 
pressure. Substituting to the Gibbs energy [Eq. (611 
the equilibrium value of A [Eq. (911, one easily 
comes to the following form of the Gibbs energy 
dependent only on x :  

g = ( 6 h  - T G s ) x  

+ k , T ( x  In x + (1 - x)ln(l - x)) 

+ 3~ 6 r i L x ( l  - x ) ,  (11) 

which is exactly the SD free energy with the posi- 
tive (cooperative) interaction parameter r = 

3~ 6rAL.  This form of the Gibbs energy allows 
first-order spin transitions if the interaction charac- 
teristic temperature Ti is larger than the in- 
tramolecular characteristic temperature T,. We see 
that even the sign of the effective intermolecular 
interaction drastically depends on the conditions 
of relaxation of the crystal geometry. 

Concentration Waves 

Let us continue the analysis of the unrelaxed 
crystal. We assume that the local deformations 
described by the variables U t  are vanishing as the 
uniform deformation variable A. In this case, the 
mechanical potential energy for the crystal with a 
nonuniform distribution of the molecules with dif- 
ferent spin has the form 

From this equation, it is clearly seen that the exci- 
tation of the concentration waves with the wave 
vectors Q = (+T, f T ,  k T )  diminishes the me- 
chanical energy of the crystal. The wave vector Q 
corresponds to the alternation of the HS and the LS 
molecules in the cubic lattice. That means that the 
HS molecules have higher concentration on the 
sublattice formed by the sites complying the con- 
dition: exp(irQ) = 1 and the LS molecules concen- 
trate preferably on the sublattice with the condi- 
tion exp( ir Q )  = - 1 or vice versa. The free energy 
for the crystal formed by the molecules of two 
types in the case when the concentration waves 
are allowed to appear acquires a more general 
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form [ll]: Gibbs eneigy functional the following conditions: 

6K 6rEL6 - (1/2)kBT h 

where the local concentrations n(r) of the HS 
molecules are defined by the condition 

n(r) = x + y(r), 

with 

y(r) = C exp( - ikr)rk. 

It should be noted that the overall fraction of the 
HS molecules and the local deviations y(r) are 
understood now as ensemble averages. With the 
only allowed concentration wave vector Q, the 
expression for the Gibbs energy per molecule ac- 
quires the form 

r 

It is convenient to introduce a new concentration 
variable 6 by the relation x = 1/2 + 6 since the 
point 6 = 0 corresponds then to the critical concen- 
tration of the HS molecules 1/2. Then, the Gibbs 
energy becomes 

g = ( a h  + 6K 6 r i L  - T6s)(1/2 + 6 )  
- 3 K  6riL((1/4 - 6’) + r;) 
+(1/2)k~T((1/2 - 6 + r ~ ) h ( 1 / 2  - 8 + rQ> 
+ (1/2 - 6 - rQ)h(1/2 - 5 - rQ) 
+(1/2 + 6 - rQ)h(1/2 + 5 - rQ) 
+(1/2 + 6 + rQ)1n(1/2 + 6 + rQ)). (15) 

Differentiating this expression with respect to two 
variables 6 and rQ, we get for the extrema of the 

-6K 6?‘iLr (1/2)kBT h 
(1/2 + 6 + rQ>(1/2 - 6 + rQ> 
(1/2 - 6 - rQ)(1/2 + 6 - rQ)  

X = 0,  

with p ( T )  = ( 6 h  + 6~ Sr iL  - T S s ) .  One can eas- 
ily see that at T = T, [defined by the condition 
p(TJ = 01 the point ( 6  = 0; rQ = 0) is an ex- 
tremum of the Gibbs energy. That justifies our 
choice of the variable 5. Expanding g in the 
Taylor series with respect to 6 and rQ up to the 
fourth order, we get for the entropy term 

(1/2)kBT(-2h2 + 4(s2 + r;) 
+(16/3)( t4 + 65’r; + l‘:)). 

Combining that with the terms of the mechanical 
energy and that of the molecular part of the Gibbs 
energy, we get 

g z ~ ( T ) s  + 3 K  SriL( 5’ - r;) 
+ 2 k ~ T [ (  6’ + ri) + (4/3) 

X (  C 4  + 65’r; + r:)] 
= p ( T ) [  + ( 2 k ~ T  + 3 K  6riL)(’ 

+(2kBT - 3 K  6&,)ri 
+(8/3)kBT( t4 + 65’r; + r;). (16) 

We see that the multiplier at 6’ is always posi- 
tive, whereas the multiplier at I‘; becomes nega- 
tive for the temperatures below To = 3~ 6r&/2kB. 
The critical points of the above Landau expansion 
are 

d g / d &  = p ( T )  + 2(2kBT + 3 K  6 r & ,  + 16kBTr;)E 

+ (32/3)kBT6 = 0 

d g / d r  = 2(2kBT - 3 K  + 16k,Tc2)& 

+ (16/3)k,~r; =o. 
The only possible solution of the first equation at 
p(Tc) = 0 is 6 = 0, though for rQ, the nontrivial 
solutions are possible below the ordering tempera- 
ture To. They present the ordered states of the 
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binary solution of the two spin forms of the con- 
sidered complex. These two solutions are always 
minima and have lower Gibbs energy than that of 
the uniform (disordered) solution with rQ = 0. 
Unfortunately, these two minima are characterized 
by the same equilibrium concentration of the HS 
isomer, and for that reason, any transition between 
them cannot account for the observed abrupt 
change of the HS fraction. This also does not corre- 
spond directly to the sublattice order model of 
spin transitions [9] where the HS isomer concentra- 
tion changes abruptly. 

Concentration Waves with Lattice 
Relaxation 

We consider now the case of the partial relax- 
ation when only A is allowed to relax, whereas U; 
are kept zero. The only difference with the above 
formulas is the change of the sign at the (1/4 - 5 ’1 
term which is now positive. That means that at the 
temperature below To = Ti the uniform mixture 
with 5 = rQ = 0 loses its stability with respect to 
both variables 4 and rQ. We see that the ordering 
temperature To now coincides with the tempera- 
ture of the second-order transition in the SD model, 
below which the first-order transitions between 
the phases with the different content of the HS 
component occur. Making respective changes in 
the above Landau expansion Eq. (161, we get two 
pairs of nontrivial minima of the Gibbs energy for 
the temperatures below the ordering temperature 

-two uniform phases with f = f and two 
ordered phases with 

To: r, = 0, (,” = (3/16X3~ - 2kBTc)/kBTc 

r; = (3 /68) (3~ 8 r i L  - 2k,TC)/k,Tc 

and 

One can easily check that at least for the critical 
temperatures close to the ordering temperature the 
equilibrium Gibbs energy is lower for the uniform 
phase. 

The transition between the uniform phases 5; = 

@ is obviously the first-order transition 
known for a long time for the SD model [51. We see 
also that the ordering not only increases the Gibbs 
energy, but also diminishes the amplitude of the 

variation of the HS fraction. The increase of the 
Gibbs energy in the ordered phase with respect to 
that of the uniform stable phase can be easily 
understood. The reason is a combination of the 
cooperative sign of the effective intermolecular 
interaction in the relaxed crystal and the opposite 
sign of the interaction in the concentration wave 
term. The concentration waves with the wave vec- 
tor Q when excited force each molecule to be 
surrounded by those of the different spin. Mean- 
while, the cooperative sign of the interaction 
favors for each molecule the surrounding by the 
molecules of the same spin. A collision of these 
two interactions leads to the overall energy in- 
crease in the ordered phase. 

Finally, we turn to the case of the completely 
relaxed crystal formed by the two spin isomers. 
First, we have to find the Gibbs energy as a func- 
tion of the concentration variables ( x and rk) only. 
In differentiating the expression for the mechanical 
energy U [Eq. (511 with respect to Ur,  one finds 
from the condition dU/dU; = 0 for the mechani- 
cal equilibrium the equilibrium value for the 
Fourier transforms of the local deformations re- 
lated to the local fraction deviations: 

for all (Y and k. Lnserting this into the mechanical 
energy [Eq. (511, we get finally 

k 
(18) 

This result is to be used in the formula for the 
Gibbs energy in the same manner as previous 
ones. Assuming that the local fraction deviations 
are small as compared to the fractions of the both 
HS and LS components of the binary mixture, we 
get by expanding the mixing entropy term up to 
the second order in r k  

k 

+ k , T ( x  In x + (1 - x)ln(l - x>) 

(19) 
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Rewriting this with the use of the variable 6 and 
expanding up to the second order in it gives 

(20) 

This expression obviously loses stability at T = To 
which should be accompanied by the excitation of 
the concentration waves with all wave vectors k. It 
is clear that the oversimplified model adopted for 
the intermolecular interaction does not allow us to 
get the correct dispersion law for the concentration 
waves. Most probably, the anharmonic terms in 
the crystal energy must be taken into account (see 
also the discussion below). 

Discussion and Conclusion 

In the present article, two major unsolved prob- 
lems concerning the spin transitions in the molecu- 
lar crystals were addressed. The first one was the 
question concerning the role of the crystal struc- 
ture relaxation for the whole process of the spin 
transition. It turned out that we can successfully 
describe the experimental features of the crystal 
volume increase and the behavior of the compress- 
ibility with temperature in the undercritical pa- 
rameter region, i.e., in the area where the inter- 
molecular interaction is weaker than that required 
for the first-order phase transition in the phe- 
nomenological SD model. We also have found that 
the ideal relaxation of the crystal lattice parameter 
is necessary for getting the cooperative sign of the 
intermolecular interaction required by the SD model 
for explanation of the cooperativity effects in the 
spin transitions. As far as we know, it is the first 
time that the parameter of the SD model is ex- 
pressed in terms of the microscopic characteristics 
( K  and 6rHL).  These parameters can be also related 
to the independently measurable quantities: com- 
pressibility of the crystal and the lattice constant 
variation under the transition (see below). 

When the interaction becomes that strong that 
the spin transition is a first-order transition (Ti = 

3~ 6r,?,,/2kB > T, = 6h/6s) ,  the compressibility 
diverges and becomes negative. That feature of the 
model can be related to the observation that the 
crystals exhibiting hysteresis in the spin transition 
(i.e., those that for sure manifest the first-order 
transition and thus have the intermolecular inter- 

action temperature Ti higher than T,) do not sur- 
vive the operation and are always broken 1121. 

We have undertaken also an attempt to repro- 
duce the intuitive results of [9] on a regular basis 
and by that to find the conditions to be imposed 
on the lattice structure and on the intermolecular 
interactions in the crystal formed by the spin- 
active transition-metal complexes in order to get 
first-order phase transition between the ordered 
phases of the corresponding binary mixture of the 
two-spin isomers with nonvanishing difference be- 
tween the fractions of the HS form in these two 
phases. Though our attempt was not particularly 
successful, we nevertheless can extract some use- 
ful information from the results obtained. First of 
all, we should mention that the model that we 
used in our study is oversimplified in two re- 
spects: First, it contains only two energy parame- 
ters kBTc and kBTi = kBTo and all the behavior of 
the system depends on their ratio only. Whatever 
changes in the system behavior occur only when 
the critical temperature defined by the molecular 
properties of the complexes forming the crystal 
and the ordering (interaction) temperature defined 
by the intermolecular forces become equal. Acci- 
dentally, the effective parameter (and the respec- 
tive temperature) governing ordering and that 
governing cooperativity coincide, which is hardly 
the case for any real crystal composed of rather 
complex molecules (see the Introduction and [l-41. 
Thus, a successful treatment should involve a more 
detailed description of the intermolecular interac- 
tion, since it is unrealistic to load on the single 
parameter K the elastic properties of the whole 
crystal and the reaction of the neighbor molecules 
on the variation of the intramolecular coordinates 
6 r H ,  occurring in the course of the spin transition. 

The model is also oversimplified with respect to 
its overall geometry. The lattice that we use is the 
simple cubic lattice with the nearest-neighbor in- 
teraction. It is very difficult to imagine any other 
sublattice separation of the cubic lattice rather than 
its separation in two sublattices defined by the 
conditions of the section Concentration Waves. 
However, for these two sublattices, the ratio s of 
the numbers of the sites within the sublattices 
equals unity, whereas the theory [9] predicts the 
first-order transition with the finite change of the 
fraction of the HS isomers only for s strictly larger 
than 1. Only in this case, the terms of the form 
6 r2 and 6 r3 which are responsible for the nonva- 
nishing equilibrium values of 5 in the ordered 
phases even for the anticooperative sign of the 

VOL. 57, NO. 5 91 0 



LATTICE RELAXATION AND ORDER IN MOLECULAR CRYSTALS 

intermolecular interaction appear in the Landau 
expansion for the free energy. Even in the context 
of the metal binary alloys [lll, the ordered phases 
appear for the more complex face-centered cubic 
lattice. The real crystals exhibiting the cooperative 
spin transitions have much more complex crystal 
structure which can alone be responsible for ap- 
pearance of additional terms in the free energy and 
thus for possible nontrivial ordered phases in the 
molecular crystals undergoing the spin transitions. 
Work along these lines is now in progress. 

Finally, we discuss the relations between the 
model proposed in this article and that due to 
Spiering and co-workers [13, 141. The results of 
these two approaches look very similar since they 
both try to relate the cooperativity of the spin 
transitions in molecular crystals with the elastic 
properties of the latter. However, the two ap- 
proaches differ by the means they use to reduce 
one class of observables (those related to the spin 
transitions) to another one (those related with the 
elastic properties). The approach [13, 141 considers 
the crystal composed by the molecules undergoing 
the spin transition as an elastic medium with de- 
fects of different volume representing the HS, LS, 

and nonmagnetic matrix ions embedded in it. Then, 
the formulas of the elasticity theory are applied in 
order to describe such defects and their interac- 
tions. However, the elasticity theory is by defini- 
tion a long-range theory and its formulas are valid 
only for the characteristic distances much longer 
than the lattice constant. It may well be the case if 
the spin-active molecules represent a small frac- 
tion of the whole number of the molecules and the 
average distance between them is of the order of 
many intermolecular spacings, whereas the rest of 
the lattice is filled by the molecules which are not 
spin-active. In this case, the elasticity formulas 
apply and the result is expressed in terms of the 
experimental elastic moduli K and a [or of the 
Eshelby constant yo = 3(1 - 0)/(1 + a)]  and of 
the rxperirnenfal crystal volume change per 
molecule A VH L.  Our approach, however, explores 
the opposite limit: We try to express simultane- 
ously the elastic modulus K ,  the crystal volume 
change, the lattice constant itself, and the coopera- 
tive interaction in terms of the microscopic parame- 
ters of the intermolecular potential K and d and of 
the molecular parameter (3 r H L  characterizing the 
spin transition in a separate molecule. Within the 
proposed model, the approximate relations be- 

tween the macroscopic and microscopic quantities 
are established which allowed us to exclude the 
microscopic values from the final answers. How- 
ever, the theory itself has a different characteristic 
length, namely, the intermolecular separation and 
thus relates all the effects to the nearest-neighbor 
interactions and to their renormalization if the 
crystal is allowed to relax. Incidentally, the results 
of the two approaches do not coincide. In the 
approach [ 13, 141, the phenomenological interac- 
tion parameter r (see the Introduction) is propor- 
tional to (1 - yo). In our simple cubic model, yo 
apparently equals to unity so that the effective 
interaction of the elastic origin vanishes. By con- 
trast, the short-range interactions do not depend 
on the Eshelby constant and, probably, also give 
some contribution to the observed cooperativity of 
the spin transitions. 
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