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Abstract

The general formulae representing separation of electronic variables of quantum (reactive) subsystem from those describing
electrons in the classical (chemically inert) part of molecular system are specified for the case when the electronic structure of
the latter is described by a semi-empirical method based on the trial wave function having the form of antisymmetrized product
of strictly localized geminals (APSLG) which leads to a local description of molecular electronic structure in terms of bond
functions and lone pair functions. This allowed us to give an explicit form of the effective electronic Hamiltonian for the
quantum subsystem and also by this to sequentially derive the explicit form of the QM/MM junction between the quantum and
classical subsystems. The latter turned out to be a sum of the contributions from different chemical bonds and lone pairs residing
in the classical part of the system. Numerical estimates for the effect of the renormalization of the Coulomb interaction of
p-electrons due to presence ofs -bonds are performed according to the derived formulae.q 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

At present research in chemistry and in related
areas of science reached the state that requires
constructing potential energy surfaces (PES) of large
systems. This problem can be encountered in the
context of chemical reactions of biomolecules, enzy-
matic reactions, surface reactions and reactions in
condensed media. Applying methods of quantum
mechanics (QM) to construct PESs in each point of
the nuclear configuration space faces the problem of
O(Nm)-scaling of the QM methods (N is the number

of one-electron states involved in the calculation).
Practically the exponentm may reach values of 5–7
for high quality modern QM methods necessary to
describe chemical reactivity (bond cleavage and
bond formation), which restricts their applicability
to molecular systems of rather small size [1].
However, the detailed QM description is necessary
for the electronic structure of the reactive site only.
The contribution of the rest of molecular system (i.e.
of its chemically inert part) to the PES of the system
can be calculated by molecular mechanics (MM),
which has to reproduce only general features of this
part of the molecular system. Thereby the hybrid
quantum-mechanical/molecular mechanical (QM/
MM) computational schemes become very popular
(Refs. [2–8]). This approach significantly reduces
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the computational costs of PES construction for large
systems because only a small part of the latter is
considered on the computationally expensive QM
level.

There exist several QM/MM schemes implemented
in a number of computation packages (see, for exam-
ple, Refs. [2–8]). The diversity of such approaches is
due to variety of both QM and MM methods
combined and of the functional form of the junction
between them. For example, in Ref. [2] the intersys-
tem Coulomb and exchange integrals are represented
as linear combinations of exponential functions with
subsequent parametrization; in Refs. [3,4] “junction
dummy atoms” are introduced; in Ref. [9] the inter-
actions between subsystems are represented also by a
sum of electrostatic and van der Waals interactions
with adjusted parameters, etc. The common feature
of all the mentioned approaches as well as of many
others is that the form of the junction parametrized in
each of them results from certain ad hoc postulate
rather than from a sequential derivation. On the
other hand, in Ref. [10] it was proposed to construct
a consistent form of the QM/MM junction with use of
an explicit procedure of separation of electronic vari-
ables. The latter is performed in Ref. [11] by using the
Löwdin partition technique [12,13] and the group
function (GF) formalism [14]. In Refs. [10,11], the
expression for the effective Hamiltonian for the quan-
tum (reactive) part of a molecular system has been
obtained and the form of the QM/MM junction has
been represented as a sum of operator averages over
the implicit wave function of the classical (inert)
subsystem, which is assumed to describe the electro-
nic ground state of the latter. The present work is
devoted to derivation of the explicit form of the effec-
tive Hamiltonian for the quantum system and, there-
fore, of the PES of the combined system and of the
specific form of the QM/MM junction for a special
local form of the wave function of the inert subsystem
which has been constructed in Refs. [15,16] to ensure
a ready transition to a description of the MM type
which will be described elsewhere [17].

2. Effective Hamiltonian for quantum system

Now we briefly review the main notations and
results of Ref. [11], where the general expression for

the effective Hamiltonian has been proposed. We
denote two subsystems of the whole molecular system
by indices R (reactive) andM (inert), where the
R-subsystem is considered as a quantum one, whereas
theM-subsystem must be finally treated on the classi-
cal (MM) level of approximation. The Hamiltonian
for the whole system is a sum of Hamiltonians for
the subsystems and of the operators for the inter-
actions between the subsystems:

H � H R�q�1 HM�q�1 Vc�q�1 Vr�q�; �1�
where for the sake of simplicity only the CoulombVc

and the resonanceVr (electron transfer) interactions
are considered. Further, the Hamiltonian for the
M-subsystem is subdivided into the Hamiltonian for
the free (without reagents)M-subsystemHM

0 and
the operator describing attraction of electrons of
the M-subsystem to the cores of theR-subsystem
VR. Analogous subdividing is performed for the
R-subsystem. To justify usage of different levels
of approximation to different parts of the whole
system (specifically, of the MM-like scheme for the
M-subsystem), the wavefunction for the whole system
is represented by the antisymmetrized product of elec-
tronic wavefunction for theR-subsystem and that of
the ground state for the freeM-subsystem (i.e. of the
ground state function ofHM

0 ):

Ck � FR
k ∧ FM

00: �2�
The exact wavefunction of any electronic state of the
whole system can be recast in the form:

Ck �
X

nMnR

X
iM iR

Ck
iMiR�nMnR�FM

iM0�nM� ∧ FR
iR�nR�;

�nM 1 nR � Ne�:
�3�

The transition from the wavefunction of the general
form Eq. (3) to the necessary form of Eq. (2) is made
by performing two sequential Lo¨wdin projection
procedures: the first one to the subspace of the states
with fixed number of electrons in the subsystems
(projection operatorP and its complementary projec-
tion operatorQ� 1 2 P� and the second one—to the
states of the type Eq. (2), i.e. containing the ground
state wavefunction of the freeM-subsystem as the
multiplier (projection operatorP and its complemen-
tary projection operatorQ � 1 2 P�: After the first
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projection, we obtain

Heff�q;E� �PHR�q�P 1 PHM�q�P 1 PVc�q�P

1 PVrr�q;E�P 1
e2

2

X
A±B

A[R;B[M

ZR
AZM

B R21
AB; �4�

where

Vrr�q;E� � Vr�q�Q�E 2 QHQ�21QVr�q�
� Vr�q�QR�q;E�QVr�q�: �5�

The second projection and subsequent averaging over
the ground state of theM-subsystem give the effective
Hamiltonian for theR-subsystem:

HR
eff�q;E;v� �HR

0 �q�1 dVM 1 kkPVrrPllM

1 kFM
00uPVRPuFM

00l

1 kFM
00uPW�q;E�PQR�v�QPW�q;E�PuFM

00l

1
e2

2

X
A±B

A[R;B[M

ZR
AZM

B R21
AB; �6�

where

dVM �VM 1 kkPVcPllM < 0 �7�
and

PWP� PVcP 1 PVrrP 1 PVRP: �8�
The above general form of the effective Hamiltonian
was obtained in Ref. [11]. In the present paper, we
perform the averaging assuming that the wave-
function of the M-subsystem has a specific form,
which gives the local description of the latter.

The form of the wave function of theM-subsystem
to be used to perform the averaging has to allow to
represent the renormalization of Hamiltonian for the
quantum subsystem as a sum of contributions from
one or more chemical bonds or lone pairs. This is
done to maintain consistency with the adopted MM
type of description for theM-subsystem. For this
purpose, we must use a quantum-chemical method,
the energy of which can be presented in a MM-like
form. The MM scheme assumes the transferability of
the functions representing geometry dependence of
different contributions to the molecular energy. Such

a transferability is shown to be achieved (Refs.
[15,16]) for the trial wave function in the form of
the antisymmetrized product of strictly localized orbi-
tals (APSLG) [18]. The wave function of this method
is constructed from two-electron functions (geminals)
assigned to chemical bonds and lone pairs:

uFl �
Y

k

g1
k u0l; �9�

where

g1
k � ukr

1
kar1

kb 1 vkl
1
kal1kb 1 wk�r1

kal1kb 1 l1kar1
kb�;

�u2
k 1 2w2

k 1 v2
k � 1�

�10�

is the electronic pair creation operator for thekth
geminal. Each of the orbitalsrk and lk assigned to
the kth chemical bond is a linear combination of the
AO’s centered on one atom only, i.e. a hybrid orbital
(HO). The unitary matrices of transition from the
AO basis to the HO basis and the geminal expansion
coefficientsuk, vk, andwk are determined variationally
in Refs. [15,16] for a wide range of organic molecules.
For the purposes of the present paper, it is important to
note that the energy of molecule in the APSLG
approximation can be represented by a sum of inter-
bond and intrabond (we use the term bond for usual
chemical bonds and lone pairs) contributions and that
the parameters of these contributions are well trans-
ferable. The derivation of the MM description from
the QM APSLG method is rather complex and will be
published elsewhere [18].

Let us consider the averages renormalizing the
Hamiltonian for the R-subsystem, carrying out the
summation over the spin projections. The operators
of the Coulomb and the resonance interactions
between the subsystems can be written as

Vc�q� �
X

pp0[R
mm0[M

� pp0imm0�p1m1m0p0;

Vr�q� �
X
p[R
m[M

vpm�q�� p1m1 m1p�;
�11�

where

�pp0imm0� � � pp0umm0�2 � pm0ump0� �12�
and the indicespp0 andmm0 refer to the one-electron
states in theR- andM-subsystems, respectively. In the
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latter case, the one-electron states can be taken as the
HO’s rk and lk in the M-subsystem. The averaging of
the operator of Coulomb interaction between the
subsystems yields:

kkPVcPllM � kFM
00uPVcPuFM

00l

�
X

pp0[R

p1p0
" X

mm0[M

� pp0imm0�kkm1m0llM

#
:

�13�
Since we assume that theM-subsystem is described by
the wave function of the APSLG type, all the orbitals
in theM-subsystem are either right (r) or left (l) orbi-
tals of geminals. In the APSLG approximation, the
averageskkm1m0llM do not vanish only for the spin-
orbitalsm andm0 belonging to the same geminal and
can be written as

kkr 1
ksr ksllM � k0ugkr

1
ksr ksg1

k u0l � Prr
k � u2

k 1 w2
k;

kkl 1
ksl ksllM � k0ugkl

1
ksl ksg1

k u0l � Pll
k � v2

k 1 w2
k; �14�

kkr 1
ksl ksllM � kkl 1

ksr ksllM � Prl
k � �uk 1 vk�wk:

It is also convenient to introduce the reduced
Coulomb integrals

Ypp0mm0 � 2� pp0umm0�2 � pm0ump0�: �15�
Therefore, we can write the averagekkPVcPllM as

kkPVcPllM �
X

pp0[R

X
s

p1
s p0s

X
k[M

�Ypp0rkrk
P rr

k

1 Ypp0lklkP
ll
k 1 �Ypp0 lkrk

1 Ypp0rklk�Prl
k �:
�16�

The ZDO approximation assures thatp� p0 andm�
m0: We denotep [ A andm [ B: In the case ofA ± B
we obtain the contributions of the type

X
s

p1
s psgAB

" X
mk[B

t

kkm1
ktmktllM

#

� 2
X
s

p1
s psgAB

X
mk[B

Pmm
k : �17�

The next contribution todVM is

VM � 2e2
X
B0

ZM
B0

ur 2 RB0 u

� 2
X

pp0[R

X
B[M

Vpp0
B ZM

B

X
s

p1
s p0s:

V pp0
B � 2e2

Z
d3r

c p
p�r�cp0 �r�
ur 2 RB0 u

�18�

Taking the sum of Eqs. (17) and (18) and using the
ZDO approximation, we obtain that the contribution
to dVM from the interactions of electrons belonging to
different atoms equals

X
A[R

X
p[A> R

X
s

p1
s ps

X
B[M
B±A

gABQM
B ; �19�

whereQM
B � 2

X
mk[B

Pmm
k 2 ZM

B is the effective charge

of the atomB. The contribution from the interactions
of electrons located on the orbitals belonging to differ-
ent systems but centred on the same frontier atoms
equals to

X
pp0[A

X
s

p1
s p0s

X
mk[A
k[M

Pmm
k Ypp0mm: �20�

The next contribution to the effective Hamiltonian for
theR-subsystem is due to the intersubsystem electron
transfers

PVrr�q;E �P�
X

pp0[R
mm0[M

vpm�q�vp0m0 �q��� p1mR�E �m01p0�

1 �m1pR�E �r 01p0��: (21)

The resolvent can be presented as

R�E � �
X

i[ImQ

uilkiu
E 2 Ei

; �22�
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whereuil are the states with one electron transferred
from theM-subsystem to theR-subsystem and vice
versa. We assume that every stateuil is an antisym-
metrized product of ionized statesuml and url of the
M- and R-subsystems, respectively. Moreover, we
construct the statesuml by removing or adding an
electron from or to the Dirac orbitals of theM-sub-
system. Therefore, we can assume the energy differ-
ences in this equation to be expressed through the
ionization potentials (IP) and electron affinities (EA):

Ei 2 E �
Im 2 Ar 2 gmr

Ir 2 Am 2 grm
:

(
�23�

Now we specify the approximate form of the statesuil
in the resolvent. First, we notice that the correlations
and bonding can be accounted to the same extent as
they are in the geminal Eq. (10) if one employs bond-
ing (b) and antibonding (a) bond orbitals (BO) for the
kth geminal (which are also the Dirac orbitals for this
geminal):

bks � xklks 1 ykrks

aks � 2yklks 1 xkrks

�x2
k 1 y2

k � 1�:
(

�24�

for constructing geminals:

g1
k � Ukb

1
kab1

kb 1 Vka
1
kaa1

kb; �U2
k 1 V2

k � 1�: �25�

The APSLG wave function remains unchanged since
the coefficient sets�Uk;Vk; xk; yk� and�uk;wk; vk� are
uniquely related:

um � Umy2
m 1 Vmx2

m

vm � Umx2
m 1 Vmy2

m

wm � �Um 2 Vm�xmym

8>><>>: : �26�

Using these bond orbitals, we construct theM-multi-
plier of the charge transfer statesuil in the form:

b1
ks

Y
l±k

g1
l u0l; a1

ks

Y
l±k

g1
l u0l;

b1
ksr 1

k2sl 1
k2s

Y
l±k

g1
l u0l; a1

ksr 1
k2sl 1

k2s

Y
l±k

g1
l u0l:

�27�

The IPs and the EAs for the bond (lone pair) states
within the APSLG-MINDO/3 approximation have the
form:

Ikb �Wr
1k� y2

k 2 2Prr
k �1 Wl

1k�x2
k 2 Pll

k�

12Wrl
1k�xkyk 2 2Prl

k �2 Wr
2ku

2
k

2Wl
2kv

2
k 2 2Wrl

2kw
2
k;

Ika �Wr
1k�x2

k 2 2Prr
k �1 Wl

1k� y2
k 2 Pll

k�

22Wrl
1k�xkyk 1 2Prl

k �2 Wr
2ku

2
k 2 Wl

2kv
2
k 2 2Wrl

2kw
2
k;

2Akb �Wr
1k�1 1 y2

k 2 2Prr
k �1 Wl

1k�1 1 x2
k 2 2Pll

k�

12Wrl
1k�xkyk 2 2Prl

k �1 Wr
2k� y2

k 2 u2
k�

1Wl
2k�x2

k 2 v2
k�1 2Wrl

2k�1 2 w2
k�;

2Aka �Wr
1k�1 1 x2

k 2 2Prr
k �1 Wl

1k�1 1 y2
k 2 2Pll

k�

22Wrl
1k�xkyk 1 2Prl

k �1 Wr
2k�x2

k 2 u2
k�

1Wl
2k� y2

k 2 v2
k�1 2Wrl

2k�1 2 w2
k�: (28)

where these quantities are expressed through the para-
meters of the effective Hamiltonian for thekth bond in
the APSLG-MINDO/3 approximation, which can be
written as

Heff
k �Wr

1k

X
s

r 1
ksr ks 1 Wl

1k

X
s

l 1
ksl ks

1Wrl
1k

X
s

�r 1
ksl ks 1 l 1

ksr ks�1 Wr
2kr

1
kar1

kbrkbrka

1Wl
2kl

1
kal1kblkblka 1 Wrl

2k

X
s

r 1
kal 1

k2sl k2sr ks;

�29�
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with

Wr
1k �

 
UAk

k 2
X

B0±Ak

gAkB0ZB0

!
1

X
tn[Ak;n±k

YAk
rkrktntnP

tt
n

1 2
X

B0±Ak

gAkB0
X

tn[B0;n±k

Ptt
n;

Wl
1k �

 
UBk

k 2
X

B0±Bk

gBkB0ZB0

!
1

X
tn[Ak;n±k

YBk
lklktntn

Ptt
n

1 2
X

B0±Bk

gBkB0
X

tn[B0;n±k

Ptt
n;

Wrl
1k � 2bk; Wr

2k � �rkrkurkrk�Ak ;

Wl
2k � �lklkulklk�Bk ; Wrl

2k � gAkBk
: (30)

The resolvent contribution from the first projection to
the effective Hamiltonian of theR-subsystem can be
written in the form including the ionized states of the
R-subsystem:

kkPVrr�q;E�PllM

� 2
X

pp0[R

X
s

X
k[M

X
i j[{ r ;l}

X
f [{ a;b}

vpikvp0 jk

�
 X

r[ImOR�NR 2 1�
p1
s urlkrup0s

u k
if u

k
jf

Ir 2 Akf 2 grfk

1
X

r[ImOR�NR 1 1�
psurlkrup

01
s

hk
if h

k
jf

Ikf 2 Ar 2 gfkr

!
;

�31�
where we use the vacuum averages

uk
if � k0ugkika f 1

kbr1
kal1kau0l;

hk
if � k0ugki

1
ka f 1

kbu0l
�32�

which can be easily expressed in terms of the
parameters of the APSLG wave function in the

representations Eqs. (10), (25) and (26):

uk
rb � ykwk 1 xkvk; uk

ra � xkwk 2 ykvk;

uk
lb � 2xkwk 2 ykuk; uk

la � ykwk 2 xkuk;

hk
rb � ykuk 1 xkwk; hk

ra � xkuk 2 ykwk;

hk
lb � ykwk 1 xkvk; hk

la � xkwk 2 ykvk:

�33�

Now we consider rather cumbersome contribution
that arise during the second projection:

kFM
00uPW�q;E �PQR�v�QPW�q;E �PuFM

00l: �34�
In order to do that we reconsider the substance of the
notion of the quantum character of theR-subsystem
and of the classical one of theM-subsystem. As it is
mentioned in Ref. [19], the quantum character of a
part of a molecular system manifests itself in its
spectrum which possesses excited states in a narrow
energy range close to its ground state. It makes it
possible to observe several quantum states in experi-
ment at least in principle. By contrast, the character-
istic of a classical part of molecular system is that its
properties are determined by its ground state only so
that the energies of its excited states are very high as
compared to the energy range probed experimentally.
In the present derivation, we are interested in obtain-
ing the effective Hamiltonian for the states of the
R-(quantum) subsystem close to its ground state. We
assume that the dependence of the resolvent onv is
weak and thev values of interest are much smaller
than the resolvent poles which are all higher than the
first excitation energy in theM- (classical) subsystem
which in its turn is higher than the excitation energies
of interest in theR-subsystem. Therefore, we can turn
to the limit v! 0 in the expression (34). The resol-
vent can be represented as

R�0� � lim
v!0

R�v� � lim
v!0

X
r

m±0

ur;mlkr;mu
v 2 vrm

� 2
X
r

m±0

ur;mlkr;mu
er 1 em

; �35�

where the sum excludes the states having the ground
state of theM-subsystem as the multiplier ander and
em are the energies of the excitations in theR- and
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M-subsystems, respectively. The contribution Eq.
(34) can be expressed as:

kFM
00uPW�q;E�PQR�0�QPW�q;E�PuFM

00l

� kFM
00uPVcPQR�0�QPVcPuFM

00l

1 kFM
00uPVrrPQR�0�QPVrrPuFM

00l

1 kFM
00uPVRPQR�0�QPVRPuFM

00l

1 2kFM
00uPVcPQR�0�QPVrrPuFM

00l

1 2kFM
00uPVcPQR�0�QPVRPuFM

00l

1 2kFM
00uPVrrPQR�0�QPVRPuFM

00l: �36�
We will write these averages explicitly. Since the
R-subsystem is quantum and thus has low-lying excited
states but theM-subsystem is classical and its excitation
energies are high and thuser ! em and er can be
neglected in Eq. (35) as compared toem: Using the
symmetry with respect to the spin indices, we obtain:

kFM
00uPVcPQR�0�QPVcPuFM

00l

�
X

pp0qq0[R

X
kn[M

X
ii 0 j j 0[{ r ;l}

�
"X

st
s 0t 0

p1
s p0s�1 2 u0Rlk0Ru�q1

t q0t

� YM
iks 0 i

0
ns 0 j nr 0 j

0
kr 0

��pp0uiki
0
n�2 dss 0 � pi 0nuikp

0����qq0u jn j 0k�

2 dtt 0 �q j 0ku jnq0��1
X
s

p1
s p02s�1 2 u0Rlk0Ru�

� q1
2sq0s� pi 0nuikp

0��q j 0ku jnq0�
Y

M
ik 2si 0ns j ns j 0k2s

#
;

�37�
where the stateu0Rl is the ground state of the free
R-subsystem. In this expression, we use the zero-
frequency polarization propagators of theM-
subsystem [14], which are defined by the expression

Y
M
mm0nn0 � 2

X
m±0

kFM
00um1m0umlkmun1n0uFM

00l
em

: �38�

to which the excitations in theM-subsystem contri-
bute. The APSLG form of the ground-state wave
function implies specific classification for these
excitations: they are either intrabond singlet–
singlet or singlet–triplet excitations or the inter-
bond one- and two-electron transfers. We present
the explicit expressions for the contributions to the
polarization propagator from the excitations of differ-
ent types.

1.
QM

iks i 0ks j kt j 0kt
: The excited stateuml is one of the

states um1;2l � g �1;2�1k

Y
k 0±k

g1
k 0 u0l (these are excited

singlet configurations of thekth geminal with others
unchanged) and

um3l � 1��
2
p �r1

kal1kb 2 l1kar1
kb�

Y
k 0±k

g1
k 0 u0l

(the triplet configuration withsz � 0 of the kth
geminal with others unchanged). Therefore,

Y
M
iks i 0ks j kt j 0kt

� 2
X

s[{1–3}

kFM
00ui

1
ksi 0ksumslkmsu j 1

kt j 0ktuF
M
00l

ems

:

�39�
The energies of excitationsems

in the APSLG-
MINDO/3 approximation Refs. [15,16] are:

ems�1;2
� 2Wr

1k�u�s�2k 1 w�s�2k 2 Prr
k �

12Wl
1k�v�s�2k 1 w�s�2k 2 Pll

k�1 Wr
2k�u�s�2k 2 u2

k�
1Wl

2k�v�s�2k 2 v2
k�1 4Wrl

1k��u�s�k 1 v�s�k �w�s�k 2 Prl
k �

12Wrl
2k�w�s�2k 2 w2

k�; (40)

em3
� �Wr

1k 2 Wl
1k��v2

k 2 u2
k�2 Wr

2ku
2
k 2 Wl

2kv
2
k

2 4Wrl
1kP

rl
k 1 Wrl

2k�u2
k 1 v2

k�: �41�
The matrix elements entering the expression for the
polarization propagator are

kFM
00ur 1

ks r ks ums�1;2l � uku
�s�
k 1 wkw

�s�
k ;

kFM
00ul 1

ks l ks ums�1;2l � vkv
�s�
k 1 wkw

�s�
k ;

kFM
00ur 1

ks l ks ums�1;2l � ukw
�s�
k 1 wkv

�s�
k ;

kFM
00ul 1

ks r ks ums�1;2l � wku
�s�
k 1 vkw

�s�
k ;

�42�
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kFM
00ur1

karkaum 3l � wk��
2
p ; kFM

00ul1kalkaum 3l � 2
wk��

2
p ;

kFM
00ur1

kalkaum 3l � 2uk��
2
p ; kFM

00ul1karkaum 3l � vk��
2
p

kFM
00ui1kb jkbum 3l � 2kFM

00ui1ka jkaum 3l: (43)

For real orbitals the following kmsui
1 juFM

00l �
kFM

00u j1iumsl holds.

2.
QM

ik2s i 0ks j ks j 0k2s
: The excited state

um4l � r 1
ksl 1

ks

Y
k 0±k

g1
k 0 u0l

(the triplet configuration withsz � 1 for s � a and
sz � 21 for s � b in the kth geminal with others
unchanged).

kFM
00ui 1

k2s i 0ks um4l � k0ugki
1
k2s i 0ks r 1

ks l 1
ks u0l: �44�

The energies of such excitations obviously equal to
respective energies of excitations to the triplet states
with sz � 0; i.e. em4

� em3
: The matrix elements equal

to

kFM
00ur1

karkbum 4l � wk; kFM
00ul1kalkbum 4l � 2wk;

kFM
00ul1karkbum 4l � vk; kFM

00ur1
kalkbum 4l � 2uk

kFM
00ui1kb jkaum 4l � 2kFM

00ui1ka jkbum 4l:

�45�

3.
QM

iks i 0ns j nt j 0kt
�n ± k�: This polarization propagator

differs from zero, only fors � t: The excited state
involved is

um5l � h1
n2s r 1

ns l 1
ns f 1

k2s

Y
k 0±k;n

g1
k 0 u0l;

wheref andh are eitherb or a BOs. The energy of the
excitation is estimated as

e5 � Ikf 2 Anh 2 gfkhn
: �46�

The IPs and the EAs�Ikf ;Anh� are given above. There-
fore, we specify here onlygfkhn

: It is convenient to intro-
duce new quantitiescf i, which are amplitudes of theith

HO (r or l) in the BOf (a or b) given by Eq. (24). Then

gfkhn
�

X
i j[{ r ;l}

�Yikik jn jn�2Pii
k�1 1 c2

fkik�1 2P j j
n c2

hn jn�

2 �ikiku jn jn��1 1 c2
fkik�c2

hn jn 1 �ik jnuik jn�c2
fkikc

2
hn jn�:
�47�

The required matrix elements are

kFM
00ui

1
ksi 0nsum5l � h k

if u
n
i 0h: �48�

4.
QM

ik 2si 0ns j ns j 0k 2s
�n ± k�: The excited state is

um6l � h1
n2sr 1

nsl 1
nsf 1

ks

Y
k 0±k;n

g1
k0 u0l;

where f and h are eitherb or a. The energy of the
excitation is estimated as

e6 � Ikf 2 Anh 2 g0fkhn
; �49�

where

g0fkhn
�

X
i j[{ r ;l}

�Yikik jn jn�2Pii
k�1 1 c2

fkik�1 2Pj j
n c2

hn jn�

2 �ikiku jn jn��1 1 c2
fkik�c2

hn jn 1 �ik jnuik jn�c2
hn jn�:
�50�

The required matrix elements are

kFM
00ui 1

k2si 0nsum6l � 2h k
if u

n
i 0h: �51�

If the ZDO approximation is used for the two-center
Coulomb interaction parameters, the contribution Eq.
(34) into the effective Hamiltonian for theR-subsys-
tem simplifies significantly:

kFM
00uPVcPQR�0�QPVcPuFM

00l �
X

pq[R

X
k[M

X
i j[{ r ;l}

�
"X

st
s 0t 0

p1
s ps�1 2 u0Rlk0Ru�q1

t qt

�
Y

M
iks 0 i ks 0 j kt 0 jkt 0 �� ppuikik�2 dss 0 �pikuikp����qqu jk jk�

2 dtt 0 �q jku jkq��1
X
s

p1
s p2s�1 2 u0Rlk0Ru�q1

2sqs

� � pikuikp��q jku jkq�
Y

M
ik 2s i ks j ks j k 2s

#
: (52)
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The next contribution to the effective Hamiltonian can
be presented as a sum of one-geminal and two-
geminal contributions:

kFM
00uPVrrPQR�0�QPVrrPuFM

00l

�
X

k

kFM
00uPVrrPQR�0�QPVrrPuFM

00lk

1
X
k±n

kFM
00uPVrrPQR�0�QPVrrPuFM

00lkn: �53�

The one-geminal contribution has the form

kFM
00uPVrrPQR�0�QPVrrPuFM

00lk

�
X

pp 0[R
qq0[R

X
ii 0 j j 0[{ r ;l}

fh[{ a;b}

X
st
66 0

vpikvp0 i 0k
vq jkvq0 j 0k

×
" X

r1;r2[ImOR�NR 1 1�

Ast66 0
pp0qq0 �r1r2�J fk2shk2t

iks i 0k6 jk6 0 j
0
kt

�Ikf 2 Ar1
2 gfkr1

��Ikh 2 Ar2
2 ghkr2

�

2
X

r1[ImOR�NR 1 1�
r2[ImOR�NR21�

�21� d j j 0
Bst66 0

pp0qq0 �r1r2�J fk2shk2t

iks i 0k6 ~j k6 0 ~j
0
kt

�Ikf 2 Ar1
2 gfkr1

��Ir2
2 Akh 2 gr2hk

�

2
X

r1[ImOR�NR 2 1�
r2[ImOR�NR11�

�21� dii 0
Cst66 0

pp0qq0 �r1r2�J fk2shk2t

~ıks ~ı 0k6 jk6 0 j
0
kt

�Ir1
2 Akf 2 gr1fk��Ikh 2 Ar2

2 ghkr2
�

1
X

r1;r2[ImOR�NR 2 1�
�21� dii 01d j j 0

�
Dst66 0

pp0qq0 �r1r2�J fk2shk2t

~ıks ~ı 0k6 ~j k6 0 ~j
0
kt

�Ir1
2 Akf 2 gr1fk��Ir2

2 Akh 2 gr2hk
�

#
; (54)

while the two-geminal contributions have the form

kFM
00uPVrrPQR�0�QPVrrPuFM

00lkn

�
X

pp0[R
qq0[R

X
ii 0 j j 0[{ r ;l}

f [{ a;b}

X
s6

vpikvp0 i 0nvq jnvq0 j 0k

×
" X

r1;r2[ImOR�NR 1 1�

Ass66
pp0qq0 �r1r2�J fk2sfk2s

iks i 0n6 jn6 j 0ks
�I kf 2 Ar1

2 gfkr1
��Ikf 2 Ar2

2 gfkr2
�

1
X

r1;r2[ImOR�NR 2 1�

D ss66
pp0qq0 �r1r2�J fk2s fk2s

i 0n6 iks j 0ks j n6

�I r1
2 Akf 2 gr1fk��Ir2

2 Akf 2 gr2fk�

#

2
X

pp0[R
qq0[R

X
ii 0 j j 0[{ r ;l}

fh[{ a;b}

X
s6

vpikvp0 i 0nvq jkvq0 j 0n�21� ds6

×
" X

r1[ImOR�NR 1 1�
r2[ImOR�NR21�

Bss66
pp0qq0 �r1r2�J fk2shn26

iks i 0n6 j 0n6 jks

�Ikf 2 Ar1
2 gfkr1

��Ir2
2 Anh 2 gr2hn

�

1
X

r1[ImOR�NR 2 1�
r2[ImOR�NR11�

Css66
pp0qq0 �r1r2�J fk2shn26

i 0n6iks j ks j 0n6
�Ir1

2 Akf 2 gr1fk��Inh 2 Ar2
2 ghnr2

�

#
;

�55�

where ~i � r for i � l and ~i � l for i � r : Operators
can be represented as

Ast66 0
pp0qq0 �r1r2� � d6sd6 0tpsur1lkr1up01s

� �1 2 u0Rlk0Ru�qtur2lkr2uq01t

1d66 0dstd62spsur1lkr1up012s

� �1 2 u0Rlk0Ru�q2sur2lkr2uq01s ;

Bst66 0
pp0qq0 �r1r2� � d6sd6 0tpsur1lkr1up01s

� �1 2 u0Rlk0Ru�q1
t ur2lkr2uq0t

2d66 0dstd62spsur1lkr1up012s

× �1 2 u0Rlk0Ru�q1
2sur2lkr2uq0s ;
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Cst66 0
pp0qq0 �r1r2� � d6sd6 0tp

1
s ur1lkr1up0s

� �1 2 u0Rlk0Ru�qtur2lkr2uq01t

2d66 0dstd62sp1
s ur1lkr1up02s

� �1 2 u0Rlk0Ru�q2sur2lkr2uq01s ;

D st66 0
pp0qq0 �r1r2� � d6sd6 0tp

1
s ur1lkr1up0s

� �1 2 u0Rlk0Ru�q1
t ur2lkr2uq0t

1d66 0dstd62sp1
s ur1lkr1up02s

� �1 2 u0Rlk0Ru�q1
2sur2lkr2uq0s: �56�

Also we introduce the quantities

J fh
ii 0 j j 0 � 2

X
m±0

kFM
00ui1f 1fi 0umlkmu j1h1h j 0uFM

00l
em

;

�57�

which in general case cannot be reduced to the
polarization propagators. Now we consider different
cases (the energies of excitations were determined
above).

1. J fk2shk2s

iks i 0ks j ks j 0ks
: The excited stateuml is one of

um1;2;3l; defined above. We have to determine only
matrix elements.

kFM
00ui 1

ks f 1
k2s fk2si 0ksums�1;2l � u k

if u
k
i 0f �s�; �58�

whereuk
if �s� coincides withuk

if defined above (see Eq.
(32)), but withuk, vk, andwk changed tou�s�k ; v�s�k ; and
w�s�k :

kFM
00ui 1

ks f 1
k2s fk2si 0ksum3l � 1��

2
p u k

if �di 0rcfklk 2 di 0 lcfkrk
�:

�59�
2. J fkshks

ik2s i 0ks j ks j 0k2s
: The excited state isum4l: The

matrix elements are

kFM
00ui 1

k2s f 1
ks fksi 0ksum4l� �21� dsau k

if �di 0rcfklk 2di 0 lcfkrk
�:

�60�
3.J fk2sfk2s

iks i 0ns j ns j 0ks
: The excited state is ofum5l type. The

required matrix elements are

kFM
00ui 1

ks f 1
k2s fk2si 0nsum5l � h k

if u
n
i 0h: �61�

4. J fk2s fk2s

i 0ns i ks j 0ks j ns
: The excited state is ofum5l type:

f 1
k2sr 1

ksl 1
ksh1

n2s

Y
k 0±k;n

g1
k 0 u0l:

The required matrix elements are

kFM
00ui 01ns f 1

k2s fk2si ksum5l � u k
if h

n
i 0f : �62�

5. J fks fks

ik2s i 0ns j ns j 0k2s
: The excited state is ofum6l type.

The required matrix elements are

kFM
00ui 1

k2s f 1
ks fksi 0nsum6l � 2h k

if u
n
i 0h: �63�

6. J fks fks

i 0ns i k2s j 0k2s
j ns
: The excited state is ofum6l type:

f 1
ks r 1

k2sl 1
k2sh1

n2s

Y
k 0±k;n

g1
k 0 u0l:

The required matrix elements are

kFM
00ui 01ns f 1

ks fksi k2sum6l � 2u k
if h

n
i 0h: �64�

Other quantitiesJ do not contain new averages and
can be obtained using expressions written above.

Also we can note that

Y
M
i ks i 0ks j ks j 0ks

�
X

fh[{ r ;l}

J fk2shk2s

iks i 0ks j ks j 0ks
�65�

and analogous expressions can be obtained for
other types ofJ , i.e. the summation over upper
indices of Js gives the polarization propagator
with respective lower indices. Therefore, if we
use the approximation that the energies of electron
transfer from (or to) thekth bond of theM-subsystem
to (or from)R-subsystem do not depend on the type of
the resultant state of the bond (or equivalently
consider only one excited state of each type for
every geminal) we obtain this contribution to the
effective Hamiltonian for theR-subsystem to be
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expressed in terms of the polarization propagators:

kFM
00uPVrrPQR�0�QPVrrPuFM

00lk

�
X

pp0[R
qq0[R

X
ii 0 j j 0[{ r ;l}

X
st
66 0

vpikvp0 i 0k
vq jkvq0 j 0k

2664 X
r1;r2[ImOR�NR 1 1�

Ast66 0
pp0qq0 �r1r2�

Y
M
iks i 0k6 jk6 0 j

0
kt

�Ik 2 Ar1
2 gkr1

��Ik 2 Ar2
2 gkr2

�

2
X

r1[ImOR�NR 1 1�
r2[ImOR�NR21�

�21� d j j 0
Bst66 0

pp0qq0 �r1r2�
Y

M
iks i 0k6 ~jk6 0 ~j

0
kt

�Ik 2 Ar1
2 gkr1

��Ir2
2 Ak 2 gr2k�

2
X

r1[ImOR�NR 2 1�
r2[ImOR�NR11�

�21� dii 0
Cst66 0

pp0qq0 �r1r2�
Y

M
~ıks~ı

0
k6 jk6 0 j

0
kt

�Ir1
2 Ak 2 gr1k��Ik 2 Ar2

2 gkr2
�

1
X

r1;r2[ImOR�NR 2 1�
�21� dii 01d j j 0

Dst66 0
pp0qq0 �r1r2�

Y
M
~ıks~ı 0k6 ~jk6 0 ~j

0
kt

�Ir1
2 Ak 2 gr1k��Ir2

2 Ak 2 gr2k�

3775; �66�

and

kFM
00uPVrrPQR�0�QPVrrPuFM

00lkn

�
X

pp0[R
qq0[R

X
ii 0 j j 0[{ r ;l}

X
s6

vpikvp0i 0nvq jnvq0 j 0k

2664 X
r1;r2[ImOR�NR 1 1�

Ass66
pp0qq0 �r1r2�

Y
M
iks i 0n6 jn6 j 0ks

�I k 2 Ar1
2 gkr1

��Ik 2 Ar2
2 gkr2

�

1
X

r1;r2[ImOR�NR 2 1�

D ss66
pp0qq0 �r1r2�

Y
M
i 0n6 iks j 0ks j n6

�Ir1
2 Ak 2 gr1k��Ir2

2 Ak 2 gr2k�

3775 2
X

pp0[R
qq0[R

X
ii 0 j j 0[{ r ;l}

X
s6

vpikvp0 i 0nvq jkvq0 j 0n�21� ds6

�

2664 X
r1[ImOR�NR 1 1�
r2[ImOR�NR21�

Bss66
pp0qq0 �r1r2�

Y
M
iks i 0n6 j 0n6 jks

�I k 2 Ar1
2 gkr1

��Ir2
2 An 2 gr2n� 1

X
r1[ImOR�NR 2 1�
r2[ImOR�NR11�

Css66
pp0qq0 �r1r2�

Y
M
i 0n6 iks j ks j 0n6

�Ir1
2 Ak 2 gr1k��In 2 Ar2

2 gnr2
�

3775;
�67�



The next contribution to the effective Hamiltonian for
theR-subsystem is ac-number. The operatorVR can
be written as

VR � 2
X

mm0[M

X
s

m1
s m0s

X
B[R

V mm0
B ZR

B

< 2
X

A[M

X
m[A> M

X
s

m1
s ms

X
B[R
B±A

gABZ R
B �68�

Respective contribution is

kFM
00uPVRPQR�0�QPVRPuFM

00l

�X
st

X
kn[M

X
ii 0 j j 0[{ r ;l}

X
BB0[R

V iki 0n
B V jn j 0k

B0 ZR
BZR

B0
Y

M
iks i 0ns j nt j 0kt

<
X
st

X
k[M

Y
M
rksr ksr ktrkt

X
BB0[R

Z R
B ZR

B0 ��1 2 dBAk
�gBAk

2 �1 2 dBBk
�gBBk

���1 2 dB0Ak
�gB0Ak

2 �1 2 dB0Bk
�gB0Bk

�: �69�

From this approximate expression we can portion out
the contribution which includesBB0 Ó { Ak;Bk} :

X
st

X
k[M

Y
M
rksr ksr ktrkt

�
X

BB0[R
BB0Ó{ Ak;Bk}

Z R
B ZR

B0 �gBAk
2 gBBk

��gB0Ak
2 gB0Bk

�: �70�

This contribution can be expressed through the bond
polarizabilities. The two center integralsgAB can be
approximated by their values calculated at the center
of the kth bond with the corrections linear in

interatomic vectors:

gBAk
� e�V�R�k�B �2 1

2 �7V�R �k�B �RAkBk
��; �71�

where V�R�k�B � is the potential induced by a unit
charge placed on the atomB at the center of the
kth bond; the correction contains the gradient of
this potential. Substituting these expressions into Eq.
(70), we get:

X
st

X
BB0[R

BB0Ó{ Ak;Bk}

Z R
B ZR

B0
X

k[M

�7V�R�k�B �m�k�AkBk
�

×�7V�R�k�B0 �m�k�AkBk
�
Y

M
rksr ksr ktrkt

� 2
X

BB0[R
BB0Ó{ Ak;Bk}

Z R
B ZR

B0

�
X

k[M

�7V�R�k�B0 �uâ �k��0�u7V�R�k�B ��; �72�

where the standard expressions reviewed in Ref. [20]
for the bond polarizability tensorŝa �k��v� for the kth
bond through the polarization propagator for the corre-
sponding geminal and the bond dipole vectorm�k�AkBk

of
the kth bond. The bond polarizabilitieŝa �k��0� are
tabulated, for example, in Ref. [21].

The cross-term between thePVcP and PVrrP is a
sum of one-geminal and two-geminal contributions:

kFM
00uPVcPQR�0�QPVrrPuFM

00l

�
X

k

kFM
00uPVcPQR�0�QPVrrPuFM

00lk

1
X
k±n

kFM
00uPVcPQR�0�QPVrrPuFM

00lkn: �73�
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The one-geminal contribution equals to

kFM
00uPVcPQR�0�QPVrrPuFM

00lk

�
X

pp0[R
qq0[R

X
ii 0 j j 0[{ r ;l}

f [{ a;b}

X
ss 0t

vq jkvq0 j 0k

2664 X
r1[ImOR�NR 1 1�

F sstt
pp0qq0 �r1��� pp0uiki

0
k�2 dss 0 � pi 0kuikp

0��V fk2t

iks 0 i
0
ks 0 j kt j 0kt

�Ikf 2 Ar1
2 gfkr1

�

2
X

r1[ImOR�NR 1 1�

dss 0dstF
s2s2ss
pp0qq0 �r1�� pi 0kuikp

0�V fks

ik2s i 0ks j ks j 0k2s

�I kf 2 Ar1
2 gfkr1

�

2
X

r1[ImOR�NR 2 1�
�21� d j j 0

Gsstt
pp0qq0 �r1��� pp0uiki

0
k�2 dss 0 � pi 0kuikp

0��V fk2t

iks 0 i
0
ks 0

~j kt
~j 0kt

�Ir1
2 Akf 2 gr1 fk�

2
X

r1[ImOR�NR 2 1�
�21�d j j 0

dss 0sstG
s2s2ss
pp0qq0 �r1��pi 0kuikp

0�V fks
ik2s i 0ks ~j ks k2s ~j 0

�I r1
2 Akf 2 gr1fk�

3775; �74�

while the two-geminal contribution is

kFM
00uPVcPQR�0�QPVrrPuFM

00lkn

�
X

pp0[R
qq0[R

X
ii 0 j j 0[{ r ;l}
f [P{ a;b}

X
st

X
r1[ImOR�NR 1 1�

vq jnvq0 j 0k

2664 F sstt
pp0qq0 �r1��� pp0uiki

0
n�2 dst� pi 0nuikp

0��V fk2t

ikt i
0
nt jnt j 0kt

�Ikf 2 Ar1
2 gfkr1

�

2
dstF

s2s2ss
pp0qq0 �r1�� pi 0nuikp

0�V fks

ik2s i 0ns j ns j 0k2s

�I kf 2 Ar1
2 gfkr1

�

3775

2
X

pp0[R
qq0[R

X
ii 0 j j 0[{ r ;l}

f [{ a;b}

X
st

X
r1[ImOR�NR2 1�

vq jkvq0 j 0n

2664Gsstt
pp0qq0 �r1��� pp0uiki

0
n�2 dst� pi 0nuikp

0��V fn2t

ikt i
0
nt j 0nt jkt

�Ir1
2 Anf 2 gr1fn�

2
dstG

s2s2ss
pp0qq0 �r1��pi 0nuikp

0�V fn2s

ik2s i 0ns j 0ns j k2s

�I r1
2 Anf 2 gr1fn�

3775; �75�

where the operator multipliers are:

F ss 0tt 0
pp0qq0 �r1� � p1

s p0s 0 �1 2 u0Rlk0Ru�qtur1lkr1uq01t 0 ; Gss 0tt 0
pp0qq0 �r1� � p1

s p0s 0 �1 2 u0Rlk0Ru�q1
t ur1lkr1uq0t 0 ; �76�



and new quantity which is somewhat intermediate
betweenP andJ is introduced:

V f
ii 0 j j 0 � 2

X
m±0

kFM
00ui1i 0umlkmu j1f 1f j 0uFM

00l
em

: �77�

All the excited states, their relative energies and
matrix averages are determined above. As for the
Js, the summation over upper indices of theVs
gives the polarization propagator. Therefore, assum-
ing that ionization energies for the different BOs of
the kth geminal are equal, we obtain
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kFM
00uPVcPQR�0�QPVrrPuFM

00lk

�
X

pp0[R
qq0[R

X
ii 0 j j 0[{ r ;l}

X
ss 0t

vq jkvq0 j 0k

2664 X
r1[ImOR�NR 1 1�

F sstt
pp0qq0 �r1��� pp0uiki

0
k�2 dss 0 � pi 0kuikp

0��
Y

M
iks 0 i

0
ks 0 j kt j 0kt
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for the one-geminal contributions and
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The cross-term between thePVcP andPVRP equals
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In the case when the ZDO approximation is employed
for the two-electron integrals, we have:
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The cross-term betweenPVrrP andPVRP equals
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The one-geminal contribution equals
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while the two-geminal contribution equals
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This term, in the case when the ZDO approximation is
used for two-electron integrals, equals:
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If the energies of electron transfer from (or to) thekth
geminal do not depend on the type of ionized orbital,
we obtain that the Eq. (85) transforms to

The last contribution to the effective Hamiltonian of
the quantum subsystem is ac-number and can be
written as
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Thereby, we obtained the explicit form of the effective
Hamiltonian for theR-subsystem. It allows not only to
determine the wave function of theR-subsystem but
also to obtain the electronic energy of the whole mole-
cule, which can be written [11] as

E0�q� � ER
0 �q�1 EM

00�q�;
whereER

0 �q� is the lowest eigenvalue of the effective
Hamiltonian Eq. (6) of theR-subsystem andEM

00�q� is
the energy of theM-subsystem which is parametrized
in the MM form (The detailed transition from the local
QM description of molecular electronic structure to
the MM will be published elsewhere [17]).

To demonstrate the importance of transition from
the bare Hamiltonian for theR-subsystem to its effec-
tive Hamiltonian we have estimated using the above
formulae the renormalization of the two-electron
parameters of Coulomb interaction (g11 and g12) in
the PPP Hamiltonian due to interaction of thep -
system with thes -core. In fact thes–p-separation
is one of the first examples of separation of electron

variables. Incidentally, in this case the contribution of
the intersubsystem resonance vanishes for the sym-
metry reasons. We want to emphasize that the values

of correction are independent on the bare values of
parameters. We start from the bare value of,7.6 eV
for theg12 parameter for the double C–C bond calcu-
lated by the formulae accepted in the standard
MINDO/3 method and the bare value of,11.8 eV
for theg11 parameter which is obtained from atomic
spectra [22]. We accepted the bond length value
1.339 Å which corresponds to that in ethylene. The
correction to theg11 andg12 parameters is due to the
contribution Eq. (37) to the effective Hamiltonian
only. In fact, in the ethylene molecule, the geminals
corresponding to the C–C and C–H bonds contribute
to the correction. The numeric estimate of the correc-
tion tog11 is negative (the renormalizedg11 is smaller
than its bare value) and equals to,0.45 eV. This
value is not very large which justifies the application
of the perturbation theory to correct the bare Hamil-
tonian. At the same time, this value suffices to be
important for constructing the Hamiltonian for the
p -subsystem. Also, we obtained that the normaliza-
tion of theg12 parameter is very small (less than 0.3%)
and thus can be neglected.

3. Discussion

The QM/MM methods become more and more
popular in theoretical modeling of large molecular
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systems. It is caused by rapidly growing needs of bio-
logical and organometallic chemistry. The application
of the QM/MM schemes to calculations on molecular
electronic structure and chemical reactivity is very
advantageous. However, the results of up-to-day
QM/MM calculations depend on the form of the junc-
tion between QM and MM subsystems and, therefore,
are ambiguous. All the junction forms proposed in the
literature are empirical. It seems to be important to
substantiate the form of the junction on the basis of
quantum chemical consideration of interaction
between the parts of the molecular system, treated
on the quantum and classical level. In the present
work, we performed a sequential derivation of the
hybrid QM/MM scheme on the basis of a previously
developed local description of molecular electronic
structure [15,16]. This allows to express finally the
renormalizations of the bare Hamiltonian in terms of
the local quantities characterizing the two-electron
bonds in the chemically inert, i.e. classical subsystem,
which can be either calculated or estimated from
experimental data on the bond polarizabilities [21].

In order to construct the effective Hamiltonian for
the quantum system or equivalently the QM/MM
junction, we have taken into account both electron
transfers between the subsystems and the excitations
in the classical part of the molecular system. We have
obtained the explicit expressions for this renormaliza-
tion, which is the function of well-defined character-
istics like the polarization propagators of theM-
subsystem. Our consideration also required to intro-
duce new quantitiesJ andV which appear due to
entanglements of one-electron transfers between the
subsystems and excitations leaving the number of
electrons in two subsystems unchanged. If the ener-
gies of the states with one-electron transfers between
the two subsystems are replaced with an average
value, the quantitiesJ andV in the expressions for
the effective Hamiltonian for the quantum subsystem
are reduced to the polarization propagators. This
allows us to express the contributions renormalizing
the Coulomb interaction of electrons in the quantum
part of the system through such observable quantities
as the bond polarizabilities are. The same applies to
the corrections renormalizing the one-electron terms
of the Hamiltonian for the quantum part. The possibi-
lity to express the corrections to the Hamiltonian for
theR-subsystem through the experimentally observa-

ble quantities such as bond polarizabilities and the
ionization potentials of the bonds allows us to elim-
inate the calculations of the electronic structure of the
classical part of the whole molecular system and to
parameterize them. The above reduction of the QM/
MM junction to the sum of transferable contributions
from the chemical bonds remaining in the classical
part was possible due to the special form for the impli-
cit wave function of electrons underlying the descrip-
tion of the classical part of the system with use of the
MM type schemes. We use the APSLG form for this
wave function. This provides a route to a possible
derivation of the classical (MM) description of the
M-subsystem.

With use of the formulae derived above for the
effective Hamiltonian for the quantum subsystem,
we addressed the old problem of substantiation of
the parameters of the PPP Hamiltonian (see, for
example, Ref. [23]). The PPP Hamiltonian for the
p-electrons is historically one of the earliest examples
of successful separation of electron variables with
those in thep -subsystem treated on the QM level,
while those in thes -subsystem left to a classical (in
fact, MM-like) description. The value of parameter
g11 in the PPP Hamiltonian equals to 11.1 eV (the
numerical values of parameters vary by about
0.5 eV in different works on thep -Hamiltonian).
The value obtained from atomic spectra of carbon
[22] is larger by ,0.7 eV. This value is effective
and implicitly includes the multiparticle corrections
[22,24] which appear due to reduction of the complete
one-electron basis to the valence one. The difference
between the PPP and experimentally estimated atomic
values can be explained by the influence of thes -core
on thep -subsystem. The correction value (0.45 eV)
obtained using the formulae written above and the
MINDO/3 approximation for the molecular integrals
is smaller than the required value of 0.7 eV by abso-
lute value but the sign (negative) and the order of
magnitude for this increment are correct. The bare
value of theg12 parameter strongly depends on the
type of approximation. The correction to this value
is small (see above). In Ref. [24], an attempt to obtain
the corrections top -Hamiltonian of benzene from the
s-core is mentioned. The result is a very small correc-
tion to theg12 parameter which is in accordance with
our result. However, the correction to theg11 para-
meter is positive and exceeds 1.2 eV. Thus the value
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of theg11 parameter obtained in that work is by 10%
larger than the PPP one. Moreover, the positive sign of
the correction contradicts the physical picture of
screening of electronic interactions in thep -subsys-
tem due to interaction with the polarization fluctua-
tions in thes -subsystem (see, for example, Ref. [25]).
More advanced attempt to obtain parameters of thep -
electron Hamiltonian was made in Ref. [26] by using
the ab initio effective valence shell Hamiltonian form-
alism. Starting from the ab initio Hamiltonian, the
parameters ofp -Hamiltonian were estimated pertur-
batively. The value of the parameterg12 was obtained
to be ,7.8 eV that is close to the value of the PPP
Hamiltonian. However, also in Ref. [26] the value of
the parameterg11 was obtained to be,12 eV. This is
significantly larger than the value of the PPP Hamil-
tonian (which is sufficiently well established from the
experimental data) and is close to the value obtained
from analysis of the excitation spectra of free carbon
atoms and ions [22]. Therefore, we conclude that the
screening of electronic interactions due tos -core can
be estimated with use of the formalism introduced in
the present paper. It noticeably reduces the value of
the one-center electron–electron repulsiong11 para-
meter obtained from the atomic spectra, but the
correction to the two-center electron–electron
repulsiong 12 parameters is negligibly small.
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[6] V. Théry, D. Rinaldi, J.-L. Rivail, B. Maigret, G. Ferenczy, J.
Comput. Chem. 15 (1994) 269.

[7] I.B. Bersuker, M.K. Leong, J.E. Boggs, R.S. Pearlman, Int. J.
Quant. Chem. 63 (1997) 1051.

[8] CECAM-NSF Meeting on QC/MM methods, Int. J. Quant.
Chem. 60 (6) (1996) 00 (special issue).

[9] T.N. Truong, E.V. Stefanovich, Chem. Phys. Lett. 256 (1996)
348.

[10] A.L. Tchougréeff, Khim. Fiz. 16 (6) (1997) 62 (in Russian);
Chem. Phys. Reps 16 (19997) 1035 (in English).

[11] A.L. Tchougréeff, Phys. Chem. Chem. Phys. 1 (1999) 1051.
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