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Effective electronic Hamiltonian for quantum subsystem in hybrid
QM/MM methods as derived from APSLG description of
electronic structure of classical part of molecular system

A.M. Tokmachev, A.L. Tchougreff, I.A. Misurkin

Karpov Institute of Physical Chemistry, Vorontsovo pole 10, Moscow 103064, Russian Federation

Abstract

The general formulae representing separation of electronic variables of quantum (reactive) subsystem from those describing
electrons in the classical (chemically inert) part of molecular system are specified for the case when the electronic structure of
the latter is described by a semi-empirical method based on the trial wave function having the form of antisymmetrized product
of strictly localized geminals (APSLG) which leads to a local description of molecular electronic structure in terms of bond
functions and lone pair functions. This allowed us to give an explicit form of the effective electronic Hamiltonian for the
guantum subsystem and also by this to sequentially derive the explicit form of the QM/MM junction between the quantum and
classical subsystems. The latter turned out to be a sum of the contributions from different chemical bonds and lone pairs residing
in the classical part of the system. Numerical estimates for the effect of the renormalization of the Coulomb interaction of
m-electrons due to presence @fbonds are performed according to the derived formu@a2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction of one-electron states involved in the calculation).
Practically the exponent may reach values of 5-7
At present research in chemistry and in related for high quality modern QM methods necessary to
areas of science reached the state that requiresdescribe chemical reactivity (bond cleavage and
constructing potential energy surfaces (PES) of large bond formation), which restricts their applicability
systems. This problem can be encountered in the to molecular systems of rather small size [1].
context of chemical reactions of biomolecules, enzy- However, the detailed QM description is necessary
matic reactions, surface reactions and reactions in for the electronic structure of the reactive site only.
condensed media. Applying methods of quantum The contribution of the rest of molecular system (i.e.
mechanics (QM) to construct PESs in each point of of its chemically inert part) to the PES of the system
the nuclear configuration space faces the problem of can be calculated by molecular mechanics (MM),
O(N™M-scaling of the QM methodd\(is the number which has to reproduce only general features of this
part of the molecular system. Thereby the hybrid

* Presented at the 5th World Congress of Theoretically Oriented quantum-mechamcal/molecular mechanical (QM/

Chemists (WATOC), Imperial College, London, 1-6 August, 1999. MM) CompUtanonf”ll schemes bgco_n_we very popular
* Corresponding author. (Refs. [2-8]). This approach significantly reduces
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the computational costs of PES construction for large
systems because only a small part of the latter is
considered on the computationally expensive QM
level.

There exist several QM/MM schemes implemented

in a number of computation packages (see, for exam-

ple, Refs. [2—8]). The diversity of such approaches is
due to variety of both QM and MM methods
combined and of the functional form of the junction
between them. For example, in Ref. [2] the intersys-

tem Coulomb and exchange integrals are represented

as linear combinations of exponential functions with
subsequent parametrization; in Refs. [3,4] “junction
dummy atoms” are introduced; in Ref. [9] the inter-
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the effective Hamiltonian has been proposed. We
denote two subsystems of the whole molecular system
by indices R (reactive) andM (inert), where the
R-subsystem is considered as a quantum one, whereas
the M-subsystem must be finally treated on the classi-
cal (MM) level of approximation. The Hamiltonian

for the whole system is a sum of Hamiltonians for
the subsystems and of the operators for the inter-
actions between the subsystems:

H=HR@ +H" () + V) + V'(@), D

where for the sake of simplicity only the Coulori
and the resonanc¥’ (electron transfer) interactions
are considered. Further, the Hamiltonian for the

actions between subsystems are represented also by #-subsystem is subdivided into the Hamiltonian for

sum of electrostatic and van der Waals interactions

the free (without reagentsp-subsystemHY and

with adjusted parameters, etc. The common feature \he operator describing attraction of electrons of
of all the mentioned approaches as well as of many ¢ M-subsystem to the cores of tHesubsystem

others is that the form of the junction parametrized in
each of them results from certain ad hoc postulate
rather than from a sequential derivation. On the
other hand, in Ref. [10] it was proposed to construct
a consistent form of the QM/MM junction with use of

an explicit procedure of separation of electronic vari-
ables. The latter is performed in Ref. [11] by using the
Léwdin partition technique [12,13] and the group

function (GF) formalism [14]. In Refs. [10,11], the

expression for the effective Hamiltonian for the quan-

tum (reactive) part of a molecular system has been ¥, = DR A DY,

obtained and the form of the QM/MM junction has

been represented as a sum of operator averages ove

the implicit wave function of the classical (inert)

subsystem, which is assumed to describe the electro-

nic ground state of the latter. The present work is
devoted to derivation of the explicit form of the effec-
tive Hamiltonian for the quantum system and, there-
fore, of the PES of the combined system and of the
specific form of the QM/MM junction for a special
local form of the wave function of the inert subsystem

7R Analogous subdividing is performed for the
R-subsystem. To justify usage of different levels
of approximation to different parts of the whole
system (specifically, of the MM-like scheme for the
M-subsystem), the wavefunction for the whole system
is represented by the antisymmetrized product of elec-
tronic wavefunction for thdr-subsystem and that of
the ground state for the fréd-subsystem (i.e. of the
ground state function dfiy):

2

'Il'he exact wavefunction of any electronic state of the
whole system can be recast in the form;

V=D D Gl @lo) A DR(R),
NuNR imir
3)
(Nm + Ng = Ne).
The transition from the wavefunction of the general
form Eq. (3) to the necessary form of Eq. (2) is made

which has been constructed in Refs. [15,16] to ensure by performing two sequential 'lvadin projection

a ready transition to a description of the MM type
which will be described elsewhere [17].

2. Effective Hamiltonian for quantum system

Now we briefly review the main notations and
results of Ref. [11], where the general expression for

procedures: the first one to the subspace of the states
with fixed number of electrons in the subsystems
(projection operatoP and its complementary projec-
tion operatoiQ = 1 — P) and the second one—to the
states of the type Eq. (2), i.e. containing the ground
state wavefunction of the fre®l-subsystem as the
multiplier (projection operato# and its complemen-
tary projection operato? = 1 — 2). After the first
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projection, we obtain
Her(0, E) = PHT(@P + PH"(Q)P + PVS(q)P

2

FPVIGEP+ S S ZRZYRG, )
2 A#B
AERBEM
where
V(g E) = V(@QE — QHQ 'QV'(9)
= V'(9QR@, E)QV'(0). (5

19

a transferability is shown to be achieved (Refs.
[15,16]) for the trial wave function in the form of
the antisymmetrized product of strictly localized orbi-
tals (APSLG) [18]. The wave function of this method
is constructed from two-electron functions (geminals)
assigned to chemical bonds and lone pairs:

|®) =[]0, 9
k
where
g;— = ukrljarlj—ﬁ + Vk';alljﬁ + Wk(rlz—allz—ﬁ + Il:-arlz—ﬁ)’
(10

The second projection and subsequent averaging over(2 4 w2 +\2 = 1)

the ground state of thid-subsystem give the effective
Hamiltonian for theR-subsystem:

HF(Q, E, ) =H{@) + VM + (PV"P))y
+ (DY|P7 RP| DY)

+ (DY|PW (g, EYP2%(w) 2P W (G, E)P|®go)

2
€ _
+ 5 Y ZRZERas, (6)
A#B
AeRBEM
where
WM = M 4+ (PVP))y = O (7
and
P#P = PV°P + PV'P + Py RpP. (8)

The above general form of the effective Hamiltonian
was obtained in Ref. [11]. In the present paper, we
perform the averaging assuming that the wave-
function of the M-subsystem has a specific form,

which gives the local description of the latter.

The form of the wave function of thigl-subsystem

to be used to perform the averaging has to allow to
represent the renormalization of Hamiltonian for the
guantum subsystem as a sum of contributions from
one or more chemical bonds or lone pairs. This is
done to maintain consistency with the adopted MM
type of description for theM-subsystem. For this

purpose, we must use a quantum-chemical method,

the energy of which can be presented in a MM-like
form. The MM scheme assumes the transferability of

is the electronic pair creation operator for thth
geminal. Each of the orbitalg, and I, assigned to
the kth chemical bond is a linear combination of the
AQ'’s centered on one atom only, i.e. a hybrid orbital
(HO). The unitary matrices of transition from the
AO basis to the HO basis and the geminal expansion
coefficientsuy, vy, andw are determined variationally

in Refs. [15,16] for a wide range of organic molecules.
For the purposes of the present paper, it is important to
note that the energy of molecule in the APSLG
approximation can be represented by a sum of inter-
bond and intrabond (we use the term bond for usual
chemical bonds and lone pairs) contributions and that
the parameters of these contributions are well trans-
ferable. The derivation of the MM description from
the QM APSLG method is rather complex and will be
published elsewhere [18].

Let us consider the averages renormalizing the
Hamiltonian for the R-subsystem, carrying out the
summation over the spin projections. The operators
of the Coulomb and the resonance interactions
between the subsystems can be written as

Vi@ = > (ppmmp m"mp’,

pPPER
mnmeM
(11)

Vi@ = > Vom(@(p"m+m"p),

pER

meM
where
(pp/[lmn) = (pp'|mnf) — (pr|mp) (12)

the functions representing geometry dependence ofand the indicepp’ andmni refer to the one-electron

different contributions to the molecular energy. Such

states in th&k- andM-subsystems, respectively. In the
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latter case, the one-electron states can be taken as th@he next contribution té\V" is

HO’s ry andly in the M-subsystem. The averaging of

the operator of Coulomb interaction between the

subsystems vyields:

(PV°PY)m = (Pgo|PVP|dg)

=>0p p[ > (pp’IImm)<<m+m’>>M].
mmeM

pPER

13

Since we assume that tMesubsystem is described by
the wave function of the APSLG type, all the orbitals
in the M-subsystem are either right) (or left (I) orbi-
tals of geminals. In the APSLG approximation, the
averages(m™m’))y do not vanish only for the spin-
orbitalsm andm’ belonging to the same geminal and
can be written as

(e konm = OO ko Ok [0) = PR = UE + Wg,

{sleom = Olaklir ko Ok 10) = Pk = Vi + W, (19)

{replkonm =

It is also convenient to introduce the reduced
Coulomb integrals

Ypp’mm =2 pp’|mm) - (pnﬂmd) (19
Therefore, we can write the averag®V°P)),, as

PV PIM = D D Pabs D Noprur P

pPER O keM

(T ey = Pit = (U + VioW.

+ Yo Pk + Moprier, + Yoprd )PR -

(16

/
Kl lry

The ZDO approximation assures tht p’ andm =
m’. We denotg € Aandm € B. In the case oA #= B
we obtain the contributions of the type

Z Ps pu?’ABI: Z <<m$m<7>>M]

mes

= 22 pa’ PsYaB Z I:>k

mB

an

)

Ir—RBI

z ZVPPZB Zpapa

pp ER BEM

|

Taking the sum of Egs. (17) and (18) and using the
ZDO approximation, we obtain that the contribution
to 5VM from the interactions of electrons belonging to
different atoms equals

Z Z Z p(-: p(r Z 'YABQE’Yl,

AER peEANR o BEM
B#A

(18

o ey
Ir-Rel

19

whereQy =2 > P{™— z§' is the effective charge
m.EB

of the atomB. The contribution from the interactions

of electrons located on the orbitals belonging to differ-

ent systems but centred on the same frontier atoms

equals to

Z Zpo pa’ Z Plianpp’mmr (20)
ppPEA o meeA
kem

The next contribution to the effective Hamiltonian for
the R-subsystem is due to the intersubsystem electron
transfers

PVI@EP = D Von(@Vym(@[(p" MRE)M*p’)

ppPER
mmeM
+(m"pRE)r" p)]. (21)
The resolvent can be presented as
_ liXil
RE)= > E-E" (22)

i€ElmQ



A.M. Tokmachev et al. / Journal of Molecular Structure (Theochem) 506 (2000) 17-34 21

whereli) are the states with one electron transferred The IPs and the EAs for the bond (lone pair) states
from the M-subsystem to th&®-subsystem and vice  within the APSLG-MINDO/3 approximation have the
versa. We assume that every sthfds an antisym- form:
metrized product of ionized stat@s) and|p) of the
M- and R-subsystems, respectively. Moreover, we
construct the stateli) by removing or adding an 1k = Wik(¥k — 2P%) + Wi O — P
electron from or to the Dirac orbitals of thé-sub-
system._ The_refore, we can assume the energy differ- +2WL (XY — 2P — Wh L2
ences in this equation to be expressed through the
ionization potentials (IP) and electron affinities (EA):
—Whevk — WA,

l,—A,—¢g
E-E :{ : ’ Mp' (23 r rr | Il
I, — A, = Oy lka = Wik — 2P + Wi (¥ — Pl)

Now we specify the approximate form of the stali¢s

in the resolvent. First, we notice that the correlations
and bonding can be accounted to the same extent as
they are in the geminal Eq. (10) if one employs bond- —Ag, = Wi (1 + y2 — 2P1) + Wi (1 + x¢ — 2P})
ing (b) and antibondingd) bond orbitals (BO) for the
kth geminal (which are also the Dirac orbitals for this
geminal):

—2Wh %Yk + 2PR) — WhUE — Wi Vi — 2WHWE,

+2Wh %Yk — 2PR) + Whe(YVi — Up)

b, = Xeler + Vil L OE — n1—
{ ke = Xlke + Yilkeo B+ = 1), 24 F W — VE) + 2Wa(1 — wp),
Ao = ~Yilko T XTkor
—Aca = Wi(L + X — 2P0 + Wy (1 + i — 2Py)
for constructing geminals:

6 = Udbibis + Viahals: (UE+VE=1.  (25) WG+ 2P0 + WadX — )

The APSLG wave function remains unchanged since FWh(V2 — V) + 2Wh (1 — wA). (28)
the coefficient setU,, Vi; X, Yi) and (U, W, V) are
uniquely related:

where these quantities are expressed through the para-

Un = Unyan + V&, meters of the effective Hamiltonian for tkéh bond in
_ the APSLG-MINDO/3 approximation, which can be
Vi = U, + V, . 26
m mem myﬁq (26) written as

Wi = (Um = Vi) XmYm

. . ) ff + [ +
Using these bond orbitals, we construct ¥Memulti- HET = Wi D ol er + Wik D lilio

plier of the charge transfer statgsin the form: 7 7

|
bk+ l—[ g|+|0> ak+ l_[ g|+ |O> +W]I:k Z (r ktrl ko + IIZIrkO') + WZrkrlj—ar;—BrkBrka
ag b a kl
Ik Ik 7
(27) +W|2k|;a||z—ﬁlkﬁlka + ng z rktxlktrrl k—ol ko»
(o8

bk-i—)'rkt(rl I:——O' l_[ g|+ |0>7 aktrrktal 12——0' l_[ g|+ |O>
12k 1k (29
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with
tt
W]I:k = (Ulfk - z ’}/AkB!ZB/) + Z Yﬁktntnpn
B/#A thEALNFK
+ 2 Z ’)/AkB/ Z PE,
B/#A t,EB’,n#k
| B,
Wi, = (ukk -y yBkB,zB,) + 0y Y,k,ktntnP
B’#By thEALNFK
tt
+ 2 Z ’yBkB! Z Pn,
B/#By t,EB/,n=k
= —Bo Wiy = (o’

Wh = (ld®,  Wo = yas,. (30)

The resolvent contribution from the first projection to
the effective Hamiltonian of th&-subsystem can be
written in the form including the ionized states of the
R-subsystem:

(PV"(a. E)P)w

-2 22 > VeV

pPER o KEM ijEfrl} fE{ab}

0 o
I
X( > PleXplpe—p
pEIMOR(Ng — p At Ot
n'? n'-(f
! i
> Pl )
pEIMOR(Ng + 1) kf v~ Yip
3D
where we use the vacuum averages
olf = <0|gkika fk-zr;—allj—a|o>,
(32

”flii? = (Olgkika fk+3|0>

which can be easily expressed in terms of the
parameters of the APSLG wave function in the
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representations Eqgs. (10), (25) and (26):

K K
Ob = YW + XVi, Ora = XWie — YiVie,
Ko K _ .
O = = XMW — ik, Ola = VWi — XiUi;
(339
K K
Mo = YUk T XcWik, Mra = XUk — YWk,
k _ k _
Mb = YkWk T XV, Mia = XeWie — YiVk-

Now we consider rather cumbersome contribution
that arise during the second projection:

(DYIPH (G, E)P2R(w) 2P W (q, E )P| D).

In order to do that we reconsider the substance of the
notion of the quantum character of tResubsystem
and of the classical one of thd-subsystem. As it is
mentioned in Ref. [19], the quantum character of a
part of a molecular system manifests itself in its
spectrum which possesses excited states in a narrow
energy range close to its ground state. It makes it
possible to observe several quantum states in experi-
ment at least in principle. By contrast, the character-
istic of a classical part of molecular system is that its
properties are determined by its ground state only so
that the energies of its excited states are very high as
compared to the energy range probed experimentally.
In the present derivation, we are interested in obtain-
ing the effective Hamiltonian for the states of the
R-(quantum) subsystem close to its ground state. We
assume that the dependence of the resolvent @
weak and thaw values of interest are much smaller
than the resolvent poles which are all higher than the
first excitation energy in th#- (classical) subsystem
which in its turn is higher than the excitation energies
of interest in theR-subsystem. Therefore, we can turn
to the limit w — 0 in the expression (34). The resol-
vent can be represented as

(34

2(0) = lim 2wy = lim 5 PP
w—0 w—0 w— W
P K
wn#0
b >< b
-y peu+p€ M|’ (35
P P 13
un#0

where the sum excludes the states having the ground
state of theM-subsystem as the multiplier arg and
€, are the energies of the excitations in tReand
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M-subsystems, respectively. The contribution Eq. to which the excitations in th&l-subsystem contri-

(34) can be expressed as: bute. The APSLG form of the ground-state wave
M ) M function implies specific classification for these
(DYIPW (0, E)P22(0) 2P (g, E)P| DY) excitations: they are either intrabond singlet—

singlet or singlet—triplet excitations or the inter-

— M Cpy g c M
= (Pgo| PV P222(0) 2PV°P| bgp) bond one- and two-electron transfers. We present

MIDV/"P 9 (0) 9PV M the explicit expressions for the contributions to the
+ {@oolPVTP258(0)2PVIPI P polarization propagator from the excitations of differ-
+ (dN|P7¥ RP22(0) 2P RP| DM ent types.
s © e 1 n:\:ai’k i - The excited statéu) is one of the
+ 2 DY|PVP22(0) 2PV P| DY) states [ug2) = g2 [ ] 9¢l0) (these are excited
K/ k
+ 2D PVEP22(0) 2P RP| Do) singlet configurations of thkth geminal with others

unchanged) and
+ 2 DYPPVP22(0) 2P RP| D). (36) 1
lug) = ﬁ(rljalljﬁ lkalkp) l_[ gk [0)

We will write these averages explicitly. Since the Kk
R-subsystem is quantum and thus has low-lying excited
states but th#-subsystem is classical and its excitation

energies are high and thug < ¢, and €, can be

(the triplet configuration withs, =0 of the kth
geminal with others unchanged). Therefore,

neglected in_ Eq. (35) as compar_ed_et,g Using the_ " o (DYl s Tk DY
symmetry with respect to the spin indices, we obtain: ol el Z p .
se{1-3} s
(DY|PVEP22(0) 2PVCP| D) (39)
- z Z z The energies of excitationg, in the APSLG-
poqTER KNEM i’ jj 'e{r.1} MINDO/3 approximation Refs. [15 16] are:
2W]_ (u(S)Z VV(S)Z Prr
M‘S:
X[ > pa Pl — |0rX0RDA, " - o )
I F2WLO W — P o WadU” — U
M N - N FWh (VD = §) + AW (U + VW — P{]
x [T «pplikin) = 8oo (piflicpNAd | jnik)
ot +2Wh (W2 — wp), (40)

8,1 (@Jilin@)) + D Pa P~ (1 —[0r)0R)
din g 100l €4y = Wik — WLV — UR) — WhUZ — WhV7

— AW P+ WAL (U2 + VD). (41)
XA, 0PIl @ik ina) [ T i i ] He T TadHc T

The matrix elements entering the expression for the
37 polarization propagator are

where the statéOg) is the ground state of the free
R-subsystem. In this expression, we use the zero-

frequency polarization propagators of thil- (@M1 Y = vv® + wnl®
subsystem [14], which are defined by the expression Oollir ko s-22) = Vi “ (42

(Dol ke | 1sm1.2) = U + Wi,

M), +
(DoOI ki T [ s=1.2) = Ul + Wiy,

Mo (Doom m|u)uln® n'|Pop)
mmnn Z

. (39

M| +
ey €u (Dol T ko | ese1.2) = WilY + VW
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W,
DI ealinz) = —, (DM Lol s) = — —<,
( 00|k k |IU«3> \/é ( oo|k k |M3> \/E

—u
<(p0’\€|)|r:a|ka|/~'“3> = Tzka <(p0’\él)||;arka|ﬂ3> =0 =

N

(Dingikglie 3> = —(DOBlika ikl 3)- (43)

For real orbitals the following (usi” j|®o0) =
(®og] j *ilps) holds.

2. ]_[i'xai,kﬁjkujfkﬂr. The excited state

wa) = Mol l_[ 9[0)
K=k

(the triplet configuration withs, = 1 for o = « and
s, = —1 for o= B in the kth geminal with others
unchanged).

<®0’%|ikttrilka|/*4> = <O|gkikta'ilkar|:t—7||2—0'|o>' (44)

The energies of such excitations obviously equal to
respective energies of excitations to the triplet states

with s, = 0, i.e. €,, = €,,. The matrix elements equal
to

(DI gli) = W (DUl &) = — W

(45

(Poollkal kgl 4) = Vi, (Po0Iraliglie a) = — Uy
(Do0likg jkaltt ) = —(Po0liKe ksl a)-

3. nimi’nﬁjmi; (n # k). This polarization propagator
differs from zero, only foro = 7. The excited state
involved is

|/~'L5> = hr::arr‘ltrlrrafkta' l_[ g;’|o>5

k'#k,n

wheref andh are eitheib or a BOs. The energy of the
excitation is estimated as

€ = It = Anh = Ofh,- (46)
The IPs and the EAd,;, A, are given above. There-
fore, we specify here only j, . Itis convenient to intro-
duce new quantities;;, which are amplitudes of thi¢h

HO (r orl) in the BOf (a or b) given by Eq. (24). Then
Oin= > i in@PL+ ) + 2P0 )
ije(rl}
= (k] Jn (@ + Cﬁik)Cﬁn i T G dnlic jn)CkaikCﬁnjn]-
(47)
The required matrix elements are
(DoDlii noltts) = i O

4. l_[i'\ffgi’nuimj’k,u (n # k). The excited state is

|I“L6> = hnturr:rlr:l*—ofk; l_[ g:’|o>’
k'#k,n

(49

wheref and h are eitherb or a. The energy of the
excitation is estimated as

€6 = lit — Anh = Oth» (49
where
Oin, = Z [Yikikjnjn(zpii(l +chi) + il Chi)
=)
= (il Jnin)(L + )Gk . + Gikjnlikin)Chyj, -
(50

The required matrix elements are

(DKol noliee) = —nif O (5)

If the ZDO approximation is used for the two-center
Coulomb interaction parameters, the contribution Eq.
(34) into the effective Hamiltonian for the-subsys-
tem simplifies significantly:

(D3oPVeP222(0) 2PVP| D) = >
PAER kEM ijE{r.I}

or
al'r!

x[ S P~ 0X0RDG .

XTTM i i (PPliki) = 85 Piklik)((@a i i)

- 577/(0! Jk|qu))+ Z p(-:p—(r(l - |0R><0R|)qj—0’q(r

X (Pl @i ik D [ TV iiwic o ] (52)
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The next contribution to the effective Hamiltonian can while the two-geminal contributions have the form
be presented as a sum of one-geminal and two-

geminal contributions:

(DUIPVTP22(0)2PV"P| D)

= > (DgolPVP22(0) 2PV P|dgp)
k
+ > (Dy|PVP22(0) 2PV P Do, (53)
k#n

The one-geminal contribution has the form

(DY|PVP22(0) 2PV P| D)

DD D VeV VaiVa
pp’ER ii'jj'E{r |} o1
qyer thefapt s’

= ko~

App’qq’(plp2)“lkglk Jkgflk
= Gio)(kh = Ay, — Ohypy)

X
[m,pzemwNRH) (e =

= Uhk .
ppqq’(plpz) il e ]k i k

- > i
p1EIMOR(Ng + 1) ( Kt
p2EIMCR(Ng—1)

gfkpl)(lt’z Akh gpzhk

fk rr kf
Tko T’ k Jk/lk

= Ag — 9ot )kn — A, — Ohepy)

p,yqqr(Plpz)~

— Z (_1) i/ I
p1EIMOR(NR — 1) ( P1
p2EIMOR(Nr+1)

+ Z (—1) %+
p1.p2EIMOR(NR — 1)

= ohis
pp qq’(plpz)H ook

TkoTieq T kel b
s 54
Iy, = At = 9,0, = Ach — Gpon) ] 4)

(DYIPVP22(0)2PV" P|Di)n

= Z Z vaikvp’i’nvanvq’rk
ppPER ii’jj'E{r I} o5
ader fe{ab}

= ofk-o

App,qq/(pIPZ)‘_'lk,I anclka
pl _ gfkm)(lkf p2 - gfkpz)

X
[pl,pzamoRmRH) (he =

D oSS

N Z poaq (PLPFil i 7 ]
p1.p2EIMOR(Ng — 1) (IPl —Ad — gthfk)(l — A — gﬂsz

'_'kakcr

B
=2 D D ViV (—D)
pPER ii’jj'E{r |} o5
qgeR fhe{ab}

ooSS
Bpp’qq’(plp”“lka i heJ s Jkor

gfkpi)(lpz Anh gpzhn)

ans

X[
premoging + 1 (K~
p2EIMOR(NR—1)

_l’_

fk rhn s
Copaq (P1P2) =) s Jk s
ghnpz)

pmemdnie -1 (o = A~ Gyt )nn —

P2EIMOR(NR+1)

G

wherei =r fori=1andi¢ =1 for i =r. Operators
can be represented as

AT (192) = 80y d:Polp1Xpr Py
X (1 = [0rXORDA|p2Xp2l0
+ 899’ 6078§70p0|p1><p1|pl::7

X (1 = [0rXORDA- o p2Xp2ld,y

G’Tprf|pl><pl| pl()'+

X (1 = [0rXO0R)A, |p2){p2ld

Boraq (P1P2) = 8540

- 899' Ba-r‘sg—apa|91><l?1 | p/j—a

X (1 = [0rX0rNA,|p2Xp2ldl »
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Coay (01P2) = 85e85:P5 [p1){p1|P
X (1 = |0rXORIA,|p2)p2ld
- 8;;’ 80785‘— (rp(j'— |P1><P1|p/— loa

X (1 = [0rXO0RDA-4|p2)Xp2ldl, ",

D ppaq (P1p2) = 85005:P0 Ip1Xp1|Ply
X (1 — |0rX0-Da," |p2)p2ldl;
+899' So"raq—op;— |P1><P1|p/—a

X (1 = |0rXORDA L, lp2Xpaldly.  (56)

Also we introduce the quantities

= - - Y (Pooli £ fi'[w)ulj h "' Do)
)—V’”/J]/ - E b
n7=0 M

(37

which in general case cannot be reduced to the
polarization propagators. Now we consider different

required matrix elements are

(P Fie-or Tl sl i) = i 6. (62)

4. Ellco The excited state is dfus) type:

L A T i 1
Inelko ] ko Ino

fkta'rktrl ktrhr:io' l_[ g;’|0>

k'#k,n

The required matrix elements are

(DGfie fic-r Fc- ol kol 1t = O . (62)
5. S o . The excited state is dfug) type.

— ioi i
lk—gl naJnquf,,

The required matrix elements are

M : K
(Do0lik o Ty ol noltte) = —mif O (63
6. 5!, , . The excited state is dfie) type:
nolk—o)k—gIne
fk:rlj—<rlg—<rh:—(r l_[ g:’|0>
K'#k,n

cases (the energies of excitations were determined The required matrix elements are

above).
1. FhedMer  The excited statdu) is one of

ok
lkalko Jko Jker

|w123), defined above. We have to determine only

matrix elements.

(Diker T F— ol kol Hs12) = OF 655 (S), (58

whereé (s) coincides withé§ defined above (see Eq.

(32)), but withuy, v, andw, changed tai”,vi?, and
9
k .

. . 1
(Dobliky T Tk kol t3) = 7 Oilf((ai’rcfklk — 81Cr,)-

(59
2. Eifffhik/k”jk ji_- The excited state igus). The

matrix elements are

(Do Try Tl kol ta) = (—1) °= 0 (810 Cry, — SinCrr,)-
(60)
3. Flsler  The excited state is oOfis) type. The

o I H i’
lko! na]na]kg

(DX s Fir Freoik—olite) = — B . (64

Other guantitiesT do not contain new averages and
can be obtained using expressions written above.
Also we can note that

M _ P [P
ol ol — DI=tt (65)

el H H i
kol kg Jko V ko
=) ko Tk

and analogous expressions can be obtained for
other types ofZ, i.e. the summation over upper
indices of 5s gives the polarization propagator
with respective lower indices. Therefore, if we
use the approximation that the energies of electron
transfer from (or to) théth bond of theM-subsystem

to (or from)R-subsystem do not depend on the type of
the resultant state of the bond (or equivalently
consider only one excited state of each type for
every geminal) we obtain this contribution to the
effective Hamiltonian for theR-subsystem to be
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expressed in terms of the polarization propagators:

(DY|PVP22(0)2PV" P| Do)

orss’ M
Anvas P12 | Tiait it
:Z Z ZV'V/'/V'V/'/ s
Pl TP T T (| — A -9 )(| —A -9 )
PP ER ii'jj'€{r,} ot pL.p2EIMOR(Ng + 1) V'K 1 kpy /A Tk P2 kp2
ag'€R s

orss’ M
_ Z (=D Bpp'qqr(Plpz)l_[ il T 0l
p1EIMOR(Ng + 1) (e = Ap1 - gkpl)(lpz A Ipok)
p2EIMO(NR—1)

oTss’ M
_ > (=D Cpp’qq’(plp2)l_["kv"’kcik;/l"k,
1 EIMO(Ng — 1) (o = Ac = Gpdlc — Ay, — Gp,)
p2EIMOR(Ng+1)

orss’ M
Dppaq (P102) l_[ TkoThe Tes T ke

+ Z (_1) 6"/+5“/ , (66)
p1.p2EIMOR(Ng — 1) (o = A= Godp, = Ac = G0
and
(DY|PV"P22(0) 2PV P| D)
M
o 102 [ Tiinini,
= Z Z vaikvp’i’anJan’i' -
‘ (k= Ay — Gk — A, — Giy)
PPER ii'jj'E{rl} os pL.p2EIMOR(Ng + 1) V' K 1 kpy /A Tk P2 ko2
qq' ER
Doyaq e [ [ 110
prag i hsike b Jns _ VP
+ Z (I, —A— A, — A — ) Z Z va'kvp"’nVQJkVQ’J’n( D
p1,p2EIMOR(NR — 1) ' P1 gPlk P2 gpzk pPER ii’jj'E{r} os
aqeRr
M M
y Bovaa P1e) [ [ibinnie Covaq P1P2) [ [isivsin
p1EIMOR(Ng + 1) (e = Apy = Gip ), = An = Gpon) p1EIMOR(NR — 1) (Toy = Ac = GpuidUn = Ay, = Gnpy)
p2E€IMOr(Nr—1) p2E€IMOR(NR+1)

(67
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The next contribution to the effective Hamiltonian for

the R-subsystem is a-number. The operatof " can
be written as

rR=—5 Smim, Y vimzg

mmeM o BER

== > dmim, > yeZs (69
AEM mEANM ‘& BER

Respective contribution is
(Dy0|PY RP22(0)2P 1 RP| D)

> vk gz TN

e
IkolnoInr) kr

=2 >

ot knEM ii’jj’€{r,|} BB'ER

=3 S [Threrene D, ZEZE(A — 8an)Yen,

or kEM BB'ER
— (1 = 0gg)¥eB)((X — S/p ) YBiA,

— (1 — dgB)YBB)- (69

interatomic vectors:

Y8, = &V(RY) — J(W(RF)Rag)), (71

where V(Rg()) is the potential induced by a unit
charge placed on the atoB at the center of the
kth bond; the correction contains the gradient of
this potential. Substituting these expressions into Eqg.
(70), we get:

> > ZE DY (WROMS)

oT BB'ER keM
BB'&{ Ax.By}

Kk K M
X(WVRI e [ T e

=- Y 5
BB'ER
BB'&{ABi}

X > (WRDIAYOIVWVRE), (72
keEM

where the standard expressions reviewed in Ref. [20]
for the bond polarizability tensod™® (w) for the kth

From this approximate expression we can portion out bond through the polarization propagator for the corre-

the contribution which includeBB' & {A,, B,} :

M
Mo kol kelkr

or keM

X Z ZE'*?ZBR'()’BAk = ¥ea)(ve'A, — YaB)- (70)
BBER
BB/&{AcBy}

This contribution can be expressed through the bond

polarizabilities. The two center integrajgg can be

approximated by their values calculated at the center
of the kth bond with the corrections linear in

sponding geminal and the bond dipole vecmﬁfBk of
the kth bond. The bond polarizabilitieg(0) are
tabulated, for example, in Ref. [21].

The cross-term between tH/°P and PV'P is a

sum of one-geminal and two-geminal contributions:

(DY|PVEP222(0) 2PV P| DY)

= > (Dg|PVP22(0)2PV'"P| i)
k

+ > (DRIPVP2Z(0) 2PV P DN (73)
k##n



A.M. Tokmachev et al. / Journal of Molecular Structure (Theochem) 506 (2000) 17-34 29

The one-geminal contribution equals to

(DY|PVEP22(0) 2PV P| DN

I AN / f—a—
paa (PR i) = 8 (PRI N
) | | ko !t gt Tkrl iz
= > > o> VaiVa'ji, (s = Ap, = Giip,)

R il s p1EIMOR(NR + 1) kf o1 — Gy
qyerR feE{ab}

80 SeF oy 7 (p1)( Piklikp) 2

_ |k*zri/k,,jkajlkf,,-

prEIMOTNg + 1) (et = Ap, — Gipy)

oo (pD((PPiki k) — Syor(Piklip Nk 7

S
lgo!! ka’J kr) kr

_ (_1) 5”-/
P15|m0%NR—1) (IP1 = A — gP1fk)

- . f
80’0'/0-0763;3/(;](-1’ Ua(pl)( p|{<|lkp/)gi::;i/k

Uj ko k*()']f/

- > o

) (74
01 EIMOR(Ng — 1) (Ip, = A — 9pyt,)
while the two-geminal contribution is
(DYIPVEP22(0) 2PV P|D{n
ooTT YR AR f—r
pp/qq’(pl)(( pp |Ik| n) - 507( p n|lkp ))Qik'ri;‘lrjnrj{@,
= Z Z Z VainVa'j;, (e —A = )
PPER ii’jj’"€{rl} o p1EIMO(Ng + 1) kf o1 — Gpr
gqqderR feP{ab}
og—0—00 AR fro
_ 80’TFpp’qq’ (pl)( pl/r1|lkp/)0i:—ai’rmajnujll<,(,
(It = Ay = Ghpy)
ooTT U HATN n—r
=D YD YD YD YRR i S i) = - PInikP DRG] i,
PPER iij'Elr) O pEimORNe ) (o, = Ant = Gpyt,)
q@erR fe{ab}
o—0—00 AN foeo
_ 80’1’ pp'qd’ (pl)( pl;1||kpl)'(zikﬂri/mj/n(rjkﬂ7 (75)
(p, = Ant = Opit,) ’

where the operator multipliers are:

I
o0 TT

e (p1) = P Py (L — [0RXORD G| 1Yol 00 (p1) = Par Pr(1 — [ORXORDG, o Xpuld,,  (76)
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and new quantity which is somewhat intermediate  All the excited states, their relative energies and
betweenl] and 5 is introduced: matrix averages are determined above. As for the
E's, the summation over upper indices of tiiks
Mo e M gives the polarization propagator. Therefore, assum-
o, = Z (Dooli i)l T E |<p00>' an ing that ionization energies for the different BOs of
iy’ = €, the kth geminal are equal, we obtain

(DUIPVEP22(0) 2PV P| D),

oo0TT

opaq (PP likit) — Bwf( PN [ Tie it i

Jkr

=3 3 S vy

Aik a' i (I — )

PPER ii’jj'E{r} oo'T P EIMOR(NR + 1) k kpy
qq'eR

80’0”80'7':;)?) qot:| cra'(pl)( p|k|lkp ) l_[

pEIMORNg + ) (e = Ay, — Gepy)

Ik (rk,,-JkaJk o

Gopag (P PPlikd) = 8o (PPN T3 i

/Jk-Jk
- (~D% .
plelmOENRfl) oy = A= Gpyid)
~ Z Y 850 85:Gpyaq * (P Piklikp) l_[ il Tl ’ 78

p1EIMOR(NR — 1) Pl —Ac— gplk)
for the one-geminal contributions and
(DIPVEP22(0) 2PV P|DjoNn

=Y Y Y Y v p(%&(ﬁ’l)((pp’“ki')—807(pi’n|ikp’))l_[i’\k"7i,mjmj,k7
n qi.Va' jj

PER i'j{'/E{r I} ‘o7 pyEIMORNg. 1) (he = Ap, — Gipy)
qq'ER

_ 5 F;pq(a mr(pl)( p|n||kp)l_[|k u'naJnaJk, _
(I — ) > i Z > > VaiVa' i
k™ k1 POER ii'ji’E{rl} o7 p1€IMCRINg— 1)
aqer

Gy (PD((PP'lidn) = 8, (PN [ T i oGy “ 0PI [ T i ii s
( p1 - An - gpln) (Ipl - An - gpln) '

(79

for the two-geminal contributions.
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The cross-term between tfR/P andP7 *P equals

(DYIPVEP22(0) 2P RP| D))

== > > ZE> p,p.1

pP’ER BER oo't

—0rX0RD > >

kneEM i jj'E{r,l}

((ppP'lixin)

By ( Py NV (80)

T
'k llm/Jm]k,-

In the case when the ZDO approximation is employed

for the two-electron integrals, we have:
(DPVEP222(0) 2P 7 RP| D)

==D 278> D> D PPl

pPER BER keM i€{r.,l} orr’

|0r)OR])

85 (PiklikP))(Yea, — Y88, l_[ i’:,,ik”/rk,_rk,-
(8

X ((pplikix) —

The cross-term betwed?V"P andP7 RP equals
(PP RP222(0) 2PV P| DY)

= (DgolP7 RP222(0) 2PV P| g
k

WP RP22(0) 2PV P| . (82)

k##n

(DY|P7 RP22(0) 2PV P| DY)

== Y ZEA-ROD D D D vpvey

pgeER BER keM jj'e{rl} ot

fe{ahb)

> Pl pila,” (Yoa 20

o

Vel ko Jkr I jr

')’BBKQ

The one-geminal contribution equals

(DY|P7 RP22(0) 2PV P| DY),

- Z Z Z ZgVIKIkVkaVpJ’(l |0Rr)OR|)

pp'ER o7 ii’jj’e{rl} BER
fE(ab)

Plp palp++ 00

Ike Ik Jk-rjk.,

I — AP1 = Yoy

x [
pLEIMOR(NG + 1)

- (=%
plelmogNR ) Loy = At~ Gp
(83

Pr |P1><P1|pT 'k |r -'k‘_j“LT :|

while the two-geminal contribution equals

(DYIPY RP22(0) 2PV P|D{n

-3 3 ¥ savia-

pPeER o ii'jj'€{rl} BER
fe{ab}

|0r){O0R|)

Polopalpl’ 2 Tinell,
It = Aoy ~ Gy

VpinVo'jl,

x [
P EIMOR(NR + 1)

_ Z (=10 Pe ‘P1><Pl|pa TR ACIN a1 ]
e ~ At = O,
(84

This term, in the case when the ZDO approximation is
used for two-electron integrals, equals:

)

Iko'lkujk'rjk-r

X [
p1EIMO(NR + 1)

et — AP1 = Yoy

(85

- > Y
p1EIMOR(NR — 1)

fi—r
Zp:|Pl><Pl|qT(‘)’BAert”rkaTJf + 'YBB1<Q|k”|k”] ol )
IP1 o Akf ]

~ Oty
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If the energies of electron transfer from (or to) ik
geminal do not depend on the type of ionized orbital,
we obtain that the Eq. (85) transforms to

(DYPY RP2%(w) 2PV P| DY)

= - Z Z Z5(1 — |0r)OR|) Z Z Zijquj/k

pgER BER KEM jj'€{rl} or

Z P-lp1Xpala; (VBA« l_[ r'\k/lrkaikfi’h +
o
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variables. Incidentally, in this case the contribution of
the intersubsystem resonance vanishes for the sym-
metry reasons. We want to emphasize that the values

(86)

Mo
VBB, Il ko ke i

X
[ prEIMORINg + 1) e = A, = Gy

(_1)5”/ (%
IPl - Ak

p1EIMOR(NR — 1)

The last contribution to the effective Hamiltonian of
the quantum subsystem is anumber and can be
written as

(DoolPY RPIDg) = =2 > > yasZE > Ph. (8D
AEM BER thEA
B#A neM

Thereby, we obtained the explicit form of the effective
Hamiltonian for theR-subsystem. It allows not only to
determine the wave function of tHesubsystem but
also to obtain the electronic energy of the whole mole-
cule, which can be written [11] as

&o(q) = EFQ) + Ex(Q),

whereER(q) is the lowest eigenvalue of the effective
Hamiltonian Eq. (6) of théR-subsystem an&(q) is
the energy of thé-subsystem which is parametrized
in the MM form (The detailed transition from the local
QM description of molecular electronic structure to
the MM will be published elsewhere [17]).

To demonstrate the importance of transition from
the bare Hamiltonian for thB-subsystem to its effec-
tive Hamiltonian we have estimated using the above
formulae the renormalization of the two-electron
parameters of Coulomb interactiofy,( and yy,) in
the PPP Hamiltonian due to interaction of the
system with theo-core. In fact theo—-separation
is one of the first examples of separation of electron

M M
Z p:|P1><P1|qT('YBAk l_[ fkafk(rfkTT'k, + ’YBBK l_[ |k¢|kafk7ff<,) ]

~ Op.k

of correction are independent on the bare values of
parameters. We start from the bare value-af.6 eV

for the y,, parameter for the double C—C bond calcu-
lated by the formulae accepted in the standard
MINDO/3 method and the bare value 6f11.8 eV

for the y1; parameter which is obtained from atomic
spectra [22]. We accepted the bond length value
1.339 Awhich corresponds to that in ethylene. The
correction to they,; andy,, parameters is due to the
contribution Eq. (37) to the effective Hamiltonian
only. In fact, in the ethylene molecule, the geminals
corresponding to the C—C and C—H bonds contribute
to the correction. The numeric estimate of the correc-
tion to y14 is negative (the renormalized , is smaller
than its bare value) and equals t60.45 eV. This
value is not very large which justifies the application
of the perturbation theory to correct the bare Hamil-
tonian. At the same time, this value suffices to be
important for constructing the Hamiltonian for the
-subsystem. Also, we obtained that the normaliza-
tion of they,, parameter is very small (less than 0.3%)
and thus can be neglected.

3. Discussion

The QM/MM methods become more and more
popular in theoretical modeling of large molecular
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systems. It is caused by rapidly growing needs of bio-
logical and organometallic chemistry. The application
of the QM/MM schemes to calculations on molecular
electronic structure and chemical reactivity is very
advantageous. However, the results of up-to-day
QM/MM calculations depend on the form of the junc-

33

ble quantities such as bond polarizabilities and the
ionization potentials of the bonds allows us to elim-
inate the calculations of the electronic structure of the
classical part of the whole molecular system and to
parameterize them. The above reduction of the QM/
MM junction to the sum of transferable contributions

tion between QM and MM subsystems and, therefore, from the chemical bonds remaining in the classical
are ambiguous. All the junction forms proposed in the part was possible due to the special form for the impli-
literature are empirical. It seems to be important to cit wave function of electrons underlying the descrip-
substantiate the form of the junction on the basis of tion of the classical part of the system with use of the
guantum chemical consideration of interaction MM type schemes. We use the APSLG form for this
between the parts of the molecular system, treated wave function. This provides a route to a possible

on the quantum and classical level. In the present derivation of the classical (MM) description of the

work, we performed a sequential derivation of the
hybrid QM/MM scheme on the basis of a previously
developed local description of molecular electronic
structure [15,16]. This allows to express finally the
renormalizations of the bare Hamiltonian in terms of
the local quantities characterizing the two-electron
bonds in the chemically inert, i.e. classical subsystem,
which can be either calculated or estimated from
experimental data on the bond polarizabilities [21].
In order to construct the effective Hamiltonian for
the quantum system or equivalently the QM/MM
junction, we have taken into account both electron

M-subsystem.

With use of the formulae derived above for the
effective Hamiltonian for the quantum subsystem,
we addressed the old problem of substantiation of
the parameters of the PPP Hamiltonian (see, for
example, Ref. [23]). The PPP Hamiltonian for the
mr-electrons is historically one of the earliest examples
of successful separation of electron variables with
those in thew-subsystem treated on the QM level,
while those in ther-subsystem left to a classical (in
fact, MM-like) description. The value of parameter
v11 in the PPP Hamiltonian equals to 11.1 eV (the

transfers between the subsystems and the excitationsnumerical values of parameters vary by about

in the classical part of the molecular system. We have
obtained the explicit expressions for this renormaliza-
tion, which is the function of well-defined character-
istics like the polarization propagators of thé-
subsystem. Our consideration also required to intro-
duce new quantitiess and 2 which appear due to

0.5eV in different works on ther-Hamiltonian).
The value obtained from atomic spectra of carbon
[22] is larger by ~0.7 eV. This value is effective
and implicitly includes the multiparticle corrections
[22,24] which appear due to reduction of the complete
one-electron basis to the valence one. The difference

entanglements of one-electron transfers between thebetween the PPP and experimentally estimated atomic
subsystems and excitations leaving the number of values can be explained by the influence ofdheore
electrons in two subsystems unchanged. If the ener- on the -subsystem. The correction value (0.45 eV)
gies of the states with one-electron transfers betweenobtained using the formulae written above and the
the two subsystems are replaced with an average MINDO/3 approximation for the molecular integrals

value, the quantitie€ and (2 in the expressions for

the effective Hamiltonian for the quantum subsystem
are reduced to the polarization propagators. This
allows us to express the contributions renormalizing
the Coulomb interaction of electrons in the quantum

is smaller than the required value of 0.7 eV by abso-
lute value but the sign (negative) and the order of
magnitude for this increment are correct. The bare
value of thevy;, parameter strongly depends on the
type of approximation. The correction to this value

part of the system through such observable quantities is small (see above). In Ref. [24], an attempt to obtain
as the bond polarizabilities are. The same applies to the corrections ter-Hamiltonian of benzene from the

the corrections renormalizing the one-electron terms
of the Hamiltonian for the quantum part. The possibi-
lity to express the corrections to the Hamiltonian for
the R-subsystem through the experimentally observa-

o-core is mentioned. The result is a very small correc-
tion to thevy,, parameter which is in accordance with
our result. However, the correction to the, para-
meter is positive and exceeds 1.2 eV. Thus the value
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of the y,; parameter obtained in that work is by 10%

larger than the PPP one. Moreover, the positive sign of

the correction contradicts the physical picture of
screening of electronic interactions in thesubsys-
tem due to interaction with the polarization fluctua-
tions in theo-subsystem (see, for example, Ref. [25]).
More advanced attempt to obtain parameters ofithe
electron Hamiltonian was made in Ref. [26] by using
the ab initio effective valence shell Hamiltonian form-
alism. Starting from the ab initio Hamiltonian, the
parameters ofr-Hamiltonian were estimated pertur-
batively. The value of the parametgr, was obtained
to be ~7.8 eV that is close to the value of the PPP
Hamiltonian. However, also in Ref. [26] the value of
the parametey,; was obtained to be-12 eV. This is
significantly larger than the value of the PPP Hamil-
tonian (which is sufficiently well established from the
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