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ABSTRACT: The problem of conjunction between quantum and classical parts in
hybrid quantum mechanical/molecular mechanical methods is considered. The form of
the junction is deduced with use of the perturbation expansion on the assumption that the
wave function underlying molecular mechanics is of the antisymmetrized product of
strictly localized geminals type. The renormalization of the potential energy surfaces of the
combined system due to interaction between quantum and classical subsystems is
represented as a sum of contributions with transparent physical sense. c© 2001 John Wiley
& Sons, Inc. Int J Quantum Chem 84: 39–47, 2001
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Introduction

H ybrid quantum mechanical (QM)/molecular
mechanical (MM) methods are very popular

in modern research on large molecular systems (par-
ticularly biological systems) [1]. These approaches
are based on the well-justified experimental obser-
vation: chemical transformations are usually local,
i.e., restricted to a small region of the entire mole-
cular system called the reaction center (RC). For
that reason it seems practical to use approxima-
tions of different levels to describe different parts
of the system when its potential energy surface
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(PES) is considered. The smaller part of the molecu-
lar system with an actually transforming electronic
structure (RC) must be described by a thorough
(preferably, highly correlated) quantum chemical
approach while the rest of the molecular system
can be described either by molecular mechanics or
by a faster quantum chemical method capable of
reproducing only general features of the PES. The
physical reason for that difference is the relative
importance of electron correlations for correct de-
scription of the processes of the bond formation
and bond cleavage—those where the uncorrelated
self-consistent field (SCF) approach gives wrong as-
ymptotic behavior of the electronic wave function of
the system.

Two important questions immediately arise for
such hybrid schemes. The first one is about the
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margin between the QM and MM subsystems. The
important restriction must be set on the subsystems.
Elaborated quantum chemical approaches (as well
as the molecular mechanical schemes) work prop-
erly only when applied to objects with an integer
number of electrons. Therefore, distributing elec-
trons between the subsystems is restricted by the
condition of small fluctuations of numbers of elec-
trons in the subsystems.

The second question arises from the fact that the
classical part of the molecule modifies the PES of
the reactive (quantum) subsystem. The interaction
between subsystems cannot be neglected. It leads
to various forms of the junction between quantum
and classical subsystems accepted in many hybrid
schemes implemented in the literature [2 – 17]. At
the same time it is noteworthy that the form of
the junction in these approaches is usually taken
ad hoc, without proper substantiation. For example,
the authors of Ref. [15] represent the junction be-
tween subsystems as a sum of electrostatic and van
der Waals interactions with adjusted parameters, in
Ref. [16] “junction dummy atoms” are introduced,
and in Ref. [17] the intersystem Coulomb and ex-
change integrals are taken as linear combinations of
exponential functions with subsequent parameteri-
zation.

From our point of view the correct form of the
junction between the quantum and classical parts
of the molecular system must be constructed on
the basis of the quantum chemical description of
the whole system and on the sequential separation
of electronic variables related to respective subsys-
tems. This approach to the junction was originally
proposed in Ref. [18]. It is based on the pertur-
bation expansion over specially constructed wave
functions of the group function method and uses an
effective electron Hamiltonian technique. The mar-
gin between quantum and classical subsystems is
chosen so that the chemical bonds are not broken
and can be assigned only to one subsystem. The con-
struction of hybrid schemes in Ref. [18] supposed
that the parameters of the MM method must be
renormalized due to interaction with the quantum
subsystem. Another construction of hybrid schemes
was proposed in Ref. [19]: the MM method remains
constant and interactions modify only the Hamil-
tonian of the quantum subsystem. The effective
Hamiltonian of the quantum subsystem was explic-
itly constructed in Ref. [20]. The main idea of all
these works was to single out the subset of elec-
tronic variables responsible for a chemical transfor-
mation to be described with use of a QM approach

and to construct (using the Löwdin partition tech-
nique [21]) the effective Hamiltonian for the reactive
subsystem which takes into account the interactions
between subsystems perturbatively. To accomplish
this, i.e., to construct the correction to the bare
Hamiltonian for the RC, it is necessary to assume
some form of the electronic wave function of the
inert environment underlying its MM description.
This function in turn can be chosen as a group
function product [22] with the groups describing
local two electron bonds, lone pairs, conjugated π

systems, etc. Particular formulae are written on an
assumption that the wave function for the inert sub-
system is of the form of an antisymmetrized product
of strictly localized geminals (APSLG) [23 – 26]. The
APSLG based approach operates by local quantities
such as chemical bonds and electron lone pairs, de-
scribes the ground states of the organic molecules
with closed electron shells and high excitation en-
ergies, and seems to be a natural starting point for
a transition from quantum mechanics to molecular
mechanics. The effective Hamiltonian of the reactive
subsystem in the presence of the “classical” sub-
system described by the APSLG method has been
explicitly constructed in Ref. [20]. The aim of the
present work is to construct the PES of the molec-
ular system described by the hybrid method with
the APSLG wave function underlying the MM de-
scription of the classical subsystem.

PES of Composite
Quantum-Classical System

Let us consider the application of the effective
electron Hamiltonian method to the separation of
the electronic variables, the aim of which is to
construct the PES for molecular systems in the hy-
brid QM/MM methods. We denote the reactive
subsystem (described by quantum mechanics) by
subscript R and the inert subsystem (described by
MM) by subscript M. The Hamiltonian for the whole
molecular system can be divided into parts corre-
sponding to separate subsystems and to the interac-
tion between them:

H = HR(q) + HM(q) + Vc(q) + Vr(q)

+ e2
∑

A �= B, A∈R
B∈M

ZR
AZM

B R−1
AB. (1)

The distinction between the R and M subsystems is
formalized by ascribing each of the one-electron ba-
sis states of the entire system either to the R or M
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subsystem. The operators HR(q) and HM(q) are then
polynomials with respect to the fermion operators
creating or annihilating electrons in the one-electron
states ascribed to the respective subsystems. On the
other hand, the operators containing the products
of the fermion operators ascribed to the different
subsystems are the interaction operators. We restrict
ourselves to only the Coulomb Vc and the resonance
Vr (electron transfer) interactions. The core charges
are also subdivided between two subsystems. The
contributions to the Hamiltonian can be further
specified. The Hamiltonian for the R subsystem is
a sum of the Hamiltonian for the free R subsystem
(without environment) HR

0 and of the operator VM

of attraction of electrons of the R subsystem to the
cores of the M subsystem. Analogously, the Hamil-
tonian for the M subsystem HM can be presented as
a sum of the Hamiltonian for free M subsystem HM

0
and of the attraction of electrons of the M subsystem
to the cores of the R subsystem VR.

The wave function for the whole system is then
approximated by the antisymmetrized product of
the wave function of the reactants (which can be
taken as a linear combination of configurations) �R

k
(where k is the number of the electronic state of the
R subsystem) and the ground state wave function
of the inert environment to be calculated without
reactants�M

00:

�
appr
k = �R

k ∧�M
00. (2)

The wave function �M
00 is the approximation to

the lowest eigenstate of the Hamiltonian HM
0 . It is

assumed to be obtained in the framework of the
APSLG method [23 – 26]. Therefore, it has the form∣∣�M

00

〉 =
∏

m

g+
m|0〉, (3)

where each geminal (two-electron wave function)
g+

m |0〉 is assigned either to a chemical bond or to an
electron lone pair.

To construct these geminals a unitary transforma-
tion must be performed from the initial atomic basis
set to the hybrid one for each heavy (nonhydrogen)
atom:

tmσ =
∑

i∈{s,x,y,z}
hA

miaiσ , (4)

where |tmσ 〉 is a spin orbital with the spin projec-
tion σ , assigned to the mth bond and located on
the right or left end of the bond (|rmσ 〉 or |lmσ 〉),
hA ∈ SO(4) is a matrix of transforming the atomic
orbital (AO) basis orbitals s, px, py, and pz of the
atom A to the hybrid orbitals (HOs), and aiσ are op-

erators annihilating an electron on a spin orbital of
the AO basis (the HO basis set is thus orthonormal).

Each geminal is a linear combination with vary-
ing amplitudes of three possible singlet states
(two ionic and one covalent—Heitler–London type)
constructed from the hybrid spin orbitals |rmσ 〉
and |lmσ 〉
g+

m = umr+
mαr+

mβ+vml+mαl+mβ+wm
(
r+

mαl+mβ + l+mαr+
mβ

)
(5)

with the normalization condition u2
m + v2

m +
2w2

m = 1. These functions are introduced in the
theory of Weinbaum [27].

The approximate wave function [Eq. (2)] can be
obtained from the exact wave function of the whole
system in the “simplified group function” represen-
tation [28 – 30],

�exact
k =

∑
nMnR

∑
iMiR

Ck
iMiR

(nMnR)�M
iM0(nM) ∧�R

iR
(nR),

(nM + nR = Ne), (6)

by two subsequent projections. The first one projects
the space where the exact wave function [Eq. (6)]
resides on the space of functions with a fixed num-
ber of electrons in each of the subsystems (provided
that nM +nR = Ne), thus eliminating the fluctuations
of numbers of electrons in the subsystems. The cor-
responding projection operator is denoted as P and
Q = 1 − P is the corresponding complementary pro-
jection operator. This projection leads to the wave
function of the group function method. The second
projection takes into account the fact that the chem-
ically inert environment is described by its ground
state wave function (it is also true when the wave
function underlying the MM is used). Therefore, the
second projection is onto the space of states with the
ground state of the M subsystem taken as a mul-
tiplier. The corresponding projection operator P is
1R ⊗ |�M

00〉〈�M
00|. Analogously we introduce the com-

plementary projection operator Q = 1 − P .
The projections imply the transition from the ex-

act Hamiltonian for the entire molecular system to
the relevant effective Hamiltonians. The effective
Hamiltonian is constructed to fulfill the requirement
that its eigenvalues acting in the restricted subspace
coincide with those of the original Hamiltonian act-
ing in the full space. The first projection yields the
effective Hamiltonian of the form

Heff(q, E) = PHR(q)P + PHM(q)P

+ PVc(q)P + PVrr(q, E)P

+ e2
∑

A �= B
A∈R, B∈M

ZR
AZM

B R−1
AB,

(7)
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where

Vrr(q, E) = Vr(q)QR(q, E)QVr(q) (8)

with the resolvent operator

R(q, E) = (E − QHQ)−1. (9)

The second projection gives the operator acting in
the space of functions of the type in Eq. (2):

Heff(q, E,ω) = e2
∑

A �= B
A∈R, B∈M

ZR
AZM

B R−1
AB

+ PP
[
HR

0 (q) + HM
0 (q) + W(q, E)

+ VM(q) + W(q, E)PQR(q,ω)
× QPW(q, E)

]
PP ,

(10)
where

W(q, E) = Vc(q) + Vrr(q, E) + VR(q) (11)

and the resolvent operator

R(q,ω) = (ω − QHQ)−1. (12)

The energy of the kth state of the combined
system can be obtained by averaging the effective
Hamiltonian over the approximate wave function
[Eq. (2)]:

Ek = 〈
�

appr
k

∣∣Heff(q, E,ω)
∣∣�appr

k

〉
. (13)

This energy obviously differs from that obtained by
using the ab initio Hamiltonian for the R subsystem
and the unrenormalized MM description for the M
subsystem:

Ek = (
ER

k0 + EM
0

) +�Ek, (14)

where the quantities ER
k0 and EM

0 are the averages
of the free subsystem Hamiltonians over the func-
tions �R

k and �M
00, respectively. The correction to

the ab initio energy (junction between quantum and
classical parts) arises from interaction between the
subsystems:

�Ek = e2
∑

A �= B
A∈R, B∈M

ZR
AZM

B R−1
AB + 〈

�
appr
k

∣∣W(q, E) + VM(q)

+ W(q, E)PQR(q,ω)QPW(q, E)
∣∣�appr

k

〉
. (15)

To perform the averaging the explicit form of
the operators of the Coulomb and resonance in-
teractions is needed. The operator of the Coulomb
interaction is taken to conserve the number of elec-
trons in the subsystems and thus can be written as

Vc(q) =
∑

pp′∈R
mm′∈M

∑
στ

(pσp′
σ‖mτm′

τ )p
+
σ m+

τ m′
τp

′
σ , (16)

where

(pσp′
σ‖mτm′

τ ) = (pp′|mm′) − δστ (pm′|mp′) (17)

and the indices pp′ and mm′ refer to the spatial
parts of one-electron states in the R and M subsys-
tems, respectively. In the latter case the one-electron
states can be taken as the HOs rk and lk in the M
subsystem. The zero differential overlap (ZDO) ap-
proximation results in turn in further simplification
due to the restrictions p = p′ and m = m′.

The operator of resonance interaction describes
the one-electron transfers from the M subsystem to
the R subsystem or vice versa:

Vr(q) =
∑
p∈R

m∈M

vpm(q)
∑
σ

(
p+
σ mσ + m+

σ pσ
)
. (18)

It is convenient to introduce one-electron density
matrices for each subsystem. The elements of this
matrix for the R subsystem are

Pσpp′
k = 〈

�R
k

∣∣p+
σ p′

σ

∣∣�R
k

〉
. (19)

The APSLG structure of the M subsystem assumes
that the one-electron densities differ from zero only
for orbitals belonging to the same geminal. Also, the
one-electron density matrix of the M subsystem is
spin-independent [25, 26]. Therefore the elements of
the one-electron density matrix for the M subsystem
are

Ptt′
m = 〈

�M
00

∣∣t+mσ t′mσ
∣∣�M

00

〉 = 〈
0
∣∣gmt+mσ t′mσg+

m

∣∣0〉
,

Prr
m = u2

m + w2
m; Pll

m = v2
m + w2

m;

Prl
m = Plr

m = (um + vm)wm,

(20)

where amplitudes um, vm, and wm were introduced
by Eq. (5). It is also convenient to introduce reduced
Coulomb integrals:

Ypp′mm′ =
∑
τ

(pσp′
σ‖mτm′

τ ) = 2(pp′|mm′) − (pm′|mp′).

(21)

The Coulomb electron interaction between the
subsystems contributes to the energy
〈
�

appr
k

∣∣Vc(q)
∣∣�appr

k

〉= ∑
pp′∈R

∑
tmt′m∈M

Ypp′imjmPtt′
m

∑
σ

Pσpp′
k .

(22)

If the ZDO approximation is used and orbitals are
attached to different atoms (A �= B), this contribu-
tion to the energy can be rewritten in the form

2
∑
A∈R
B∈M

γAB

( ∑
tm∈B

Ptt
m

)( ∑
p∈A

∑
σ

Pσpp
k

)
. (23)
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For frontier atoms the integral γAB must be replaced
by Ypptmtm , which cannot be factorized from the
sums over tm and p, respectively. The operator of at-
traction of electrons in the R subsystem to the cores
of the M subsystem VM can be written as

VM(q) = −e2
∑

B

ZM
B′

|r − RB′ |

= −
∑

pp′∈R

∑
B∈M

Vpp′
B ZM

B

∑
σ

p+
σ p′

σ , (24)

Vpp′
B = −e2

∫
d3r

ψ∗
p (r)ψp′ (r)

|r − RB′ | .

The averaging of this expression over the approxi-
mate wave function gives
〈
�

appr
k

∣∣VM(q)
∣∣�appr

k

〉 = −
∑

pp′∈R

∑
B∈M

Vpp′
B ZM

B

∑
σ

Pσpp′
k .

(25)

In the case of the ZDO approximation the p = p′
condition applies. Analogously, the contribution to
the energy from the attraction of electrons in the M
subsystem to the cores of the R subsystem is

〈
�

appr
k

∣∣VR(q)
∣∣�appr

k

〉 = −2
∑

tmt′m∈M

∑
A∈R

Vtmt′m
A ZR

APtt′
m .

(26)

It can be noted that the contributions of Eqs. (23),
(25), and (26) can be combined with the repulsion
of the cores of the R and M subsystems yielding
the total electrostatic contribution to the renormal-
ization of the PES. Each of these four contributions
is large, but the total electrostatic correction is rela-
tively small:

�Eel−st
k = e2

∑
A �= B

A∈R, B∈M

ZR
AZM

B R−1
AB

+ 〈
�

appr
k

∣∣Vc(q) + VM(q) + VR(q)
∣∣�appr

k

〉
. (27)

If the ZDO approximation is used the electrostatic
contribution from different atoms of the R and M
subsystems acquires the familiar form∑

A∈R

∑
B∈M

γABQRk
A QM

B , (28)

where the effective atomic charges are defined by

QRk
A =

∑
p∈R

∑
σ

Pσpp
k − ZR

A,

QM
B = 2

∑
tm∈B

Ptt
m − ZM

B .
(29)

The contribution to the PES from the operator
Vrr(q, E) corresponds to the second order of the per-

turbation theory with respect to the intersystem
one-electron transfers. To estimate it we present the
corresponding resolvent operator in the approxi-
mate form

R(E) =
∑

i∈ImQ

|i〉 〈i|
E − Ei

, (30)

where |i〉 are the states with one electron transferred
from the M subsystem to the R subsystem or vice
versa. Each state |i〉 is an antisymmetrized product
of the ionized states |µ〉 and |ρ〉 of the M and R
subsystems, respectively. The energy denominators
in the resolvent expression [Eq. (30)] are expressed
through the ionization potentials (IPs) and the elec-
tron affinities (EAs) of the respective subsystems:

Ei − E =
{

Iµ − Aρ − gµρ
Iρ − Aµ − gρµ. (31)

The approximate form of ionized states of the M
subsystem as it appears from the APSLG approxi-
mation is the following. The ionized states |µ〉 are
assumed to be obtained by removing or adding an
electron from or to bonding and antibonding or-
bitals of the geminals of the M subsystem. These
orbitals can be written as [31]

bmσ = xmlmσ + ymrmσ

amσ = −ymlmσ + xmrmσ

(
x2

m + y2
m = 1

)
, (32)

where xm and ym are chosen to represent the mth
geminal in the form

g+
m = Umb+

mαb+
mβ + Vma+

mαa+
mβ ;

(
U2

m + V2
m = 1

)
.

(33)

The coefficient sets (Um, Vm; xm, ym) and (um, wm, vm)
are uniquely related:

um = Umy2
m + Vmx2

m

vm = Umx2
m + Vmy2

m

wm = (Um − Vm)xmym

(34)

and the APSLG structure of the wave function can
be expressed both in the basis of hybrid orbitals and
in the basis of bond orbitals. The approximate wave
functions of the ionized states of the M subsystem
have the form

b+
mσ

∏
l �= m

g+
l |0〉, a+

mσ

∏
l �= m

g+
l |0〉,

b+
mσ r+

m−σ l+m−σ
∏
l �= m

g+
l |0〉,

a+
mσ r+

m−σ l+m−σ
∏
l �= m

g+
l |0〉.

(35)

The corresponding IPs and EAs entering Eq. (31) are
estimated in Ref. [20]. It is convenient to introduce

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 43



TOKMACHEV AND TCHOUGRÉEFF

some vacuum averages for the M subsystem:

θm
if = 〈

0
∣∣gmimα f +

mβr+
mαl+mα

∣∣0〉
,

ηm
if = 〈

0
∣∣gmi+mα f +

mβ

∣∣0〉
.

(36)

These averages can be readily evaluated:

θm
rb = ymwm + xmvm, θm

ra = xmwm − ymvm,

θm
lb = −xmwm − ymum, θm

la = ymwm − xmum,

ηm
rb = ymum + xmwm, ηm

ra = xmum − ymwm,

ηm
lb = ymwm + xmvm, ηm

la = xmwm − ymvm.

(37)

Using these notations we obtain the contribution
to the energy from the operator Vrr(q, E):

�Err
k

= 〈
�

appr
k

∣∣Vrr(q, E)
∣∣�appr

k

〉
= −

∑
pp′∈R

∑
m∈M

∑
ij∈{r,l}

∑
f∈{a,b}

vpimvp′jm

×
∑
σ

( ∑
ρ∈ImOR(NR−1)

〈�R
k |p+

σ |ρ〉〈ρ|p′
σ |�R

k 〉θm
if θ

m
jf

Ikρ − Amf − gkρfm

+
∑

ρ∈ImOR(NR+1)

〈�R
k |pσ |ρ〉〈ρ|p′+

σ |�R
k 〉ηm

if η
m
jf

Imf − Akρ − gfmkρ

)
.

(38)

This expression can be simplified if the IPs and EAs
are replaced by their average values:

�Err
k ≈ −

∑
pp′∈R

∑
m∈M

∑
ij∈{r,l}

∑
f∈{a,b}

vpimvp′jm

×
∑
σ

( Pσpp′
k θm

if θ
m
jf

Ik − Amf − gkfm
+

(1 − Pσp′p
k )ηm

if η
m
jf

Imf − Ak − gfmk

)
. (39)

The contribution from the second projection can be
presented as a sum:〈
�

appr
k

∣∣W(q, E)PQR(q,ω)QPW(q, E)
∣∣�appr

k

〉
= 〈
�

appr
k

∣∣Vc(q)PQR(q,ω)QPVc(q)
∣∣�appr

k

〉
+ 〈
�

appr
k

∣∣VR(q)PQR(q,ω)QPVR(q)
∣∣�appr

k

〉
+ 2

〈
�

appr
k

∣∣Vc(q)PQR(q,ω)QPVR(q)
∣∣�appr

k

〉
+ 2

〈
�

appr
k

∣∣Vc(q)PQR(q,ω)QPVrr(q, E)
∣∣�appr

k

〉
+ 2

〈
�

appr
k

∣∣Vrr(q, E)PQR(q,ω)QPVR(q)
∣∣�appr

k

〉
+ 〈
�

appr
k

∣∣Vrr(q, E)PQR(q,ω)QPVrr(q, E)
∣∣�appr

k

〉
.

(40)

The first three contributions of Eq. (40) are large
enough, but the perturbation expansion is valid
because these contributions are grouped into the

relatively small correction. At the same time, for
convenience we consider these contributions sep-
arately. The resolvent can be approximated by the
sum over the states:

R(q,ω) =
∑
ρ

µ �= 0

|ρ,µ〉〈ρ,µ|
ω − ωρµ

. (41)

We assume that the dependence of the resolvent
on ω is weak and the ω values of interest are
much smaller than the resolvent poles that are all
higher than the first excitation energy in the M
(classical) subsystem, which in turn is higher than
the excitation energies of interest in the R sub-
system. Therefore we can pass to the limit ω → 0
in the above resolvent. The first contribution to
Eq. (40) is the second-order correction due to
the Coulomb repulsion operator. To write down
this contribution it is convenient to introduce dy-
namic polarization propagators [22] for the R- and
M-subsystems,

�Rk
pp′qq′ (ω) =

∑
ρ �= k

(ερ − εk)〈�R
k |p+p′|ρ〉〈ρ|q+q′|�R

k 〉
(ερ − εk)2 − ω2 ,

(42)

�M
mm′nn′ (ω) =

∑
µ �= 0

εµ〈�M
00|m+m′|µ〉〈µ|n+n′|�M

00〉
ε2
µ − ω2 ,

where ερ and εµ are the energies of excitations
in the R- and M-subsystems, respectively. The
excitation energies and matrix elements necessary
for calculating the polarization propagator of the
M-subsystem are given in Ref. [20]. Using those
notations we obtain
〈
�

appr
k

∣∣Vc(q)PQR(q, 0)QPVc(q)
∣∣�appr

k

〉
=

∑
pp′qq′∈R

∑
imi′njnj′m∈M

×
{ ∑

στ
σ ′τ ′

(pσp′
σ‖imσ ′ i′nσ ′ )(qτq′

τ‖jnτ ′ j′mτ ′ )
}

×
[

Pσpp′
k Pτqq′

k �M
imσ ′ i′nσ ′ jnτ ′ j′mτ ′

(0)

+ 2
π

∫
�Rk

pσ p′
σ qτ q′

τ
(iu)�M

imσ ′ i′nσ ′ jnτ ′ j′mτ ′
(iu) du

]
.

(43)

The expression using integrals is not useful in
practice. At the same time we can approximate it,
taking into account the essentially higher energies
of excitations in the M subsystem compared with
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those of the R subsystem:

2
π

∫
�Rk

pσ p′
σ qτ q′

τ
(iu)�M

imσ ′ i′nσ ′ jnτ ′ j′mτ ′
(iu) du

≈�M
imσ ′ i′nσ ′ jnτ ′ j′mτ ′

(0)
∑
k′ �= k

〈
�R

k

∣∣p+
σ p′

σ

∣∣�R
k′
〉〈
�R

k′
∣∣q+
τ q′

τ

∣∣�R
k

〉
;

(44)

i.e., it is a sum of products of the static polarization
propagator of the M subsystem and transition elec-
tron densities of the R subsystem. The contribution
in Eq. (44) mainly corresponds to the dispersion
interaction between the subsystems �Edisp

k .
The contribution to the energy of the second or-

der in operators VR(q) does not change the relative
energies of the states in the R subsystem and, there-
fore, is k-independent, where k is the number of
electronic states in the R subsystem. The operator
VR(q) can be written in the form

VR = −
∑

mm′∈M

∑
σ

m+
σ m′

σ

∑
A∈R

Vmm′
A ZR

A

≈ −
∑
B∈M

∑
m∈B∩M

∑
σ

m+
σ mσ

∑
A∈R

A �= B

γABZR
A. (45)

The contribution to the energy is

�ERR
k = 〈

�
appr
k

∣∣VR(q)PQR(q, 0)QPVR(q)
∣∣�appr

k

〉
=

∑
imi′njnj′m∈M

∑
AA′∈R

Vimi′n
A Vjnj′m

A′ ZR
AZR

A′

×
∑
στ

�M
imσ i′nσ jnτ j′mτ (0). (46)

Let us denote the atom at the right end of the mth
bond as Rm and that at the left end as Lm. If AA′ /∈
{Rm, Lm} the contribution of Eq. (46) can be approxi-
mately rewritten in the physically transparent form
in terms of the bond polarizability tensors α̂(m)(ω)
[20]:

−
∑
m∈M

∑
AA′∈R

AA′/∈{Rm,Lm}

ZR
AZR

A′
(∇V

(
R(m)

A′
)∣∣α̂(m)(0)

∣∣∇V
(
R(m)

A

))
,

(47)

where V(R(m)
A ) is the potential induced by a unit

charge placed on the atom A at the center of the
mth bond. It is worth mentioning that the bond po-
larizabilities α̂(k)(0) are tabulated, for example, in
Ref. [32].

The cross term between the Vc(q) and VR(q)
equals

�EcR
k = 〈

�
appr
k

∣∣Vc(q)PQR(q, 0)QPVR(Q)
∣∣�appr

k

〉
= −

∑
σσ ′τ

∑
pp′∈R

Pσpp′
k

∑
A∈R

ZR
A

×
∑

imi′njnj′m∈M

(pσp′
σ‖imσ ′ i′nσ ′ )V

jnj′m
A

×�M
imσ ′ i′nσ ′ jnτ j′mτ (0). (48)

The contributions to the energy�EcR
k and �ERR

k and
the first contribution of Eq. (43) can be grouped in
the total correction�Ecoul

k , which corresponds to the
second-order interaction between charges in the R
subsystem due to polarization in the M subsystem.
If the ZDO approximation is used, this contribution
can be written as

�Ecoul
k =

∑
m∈M

∑
ii′∈{r,l}

∑
AA′∈R

γAImγA′I′mQR
AQR

A′

×
∑
στ

�M
imσ i′mσ i′mτ imτ

(0), (49)

where Im denotes the atom of the mth bond corre-
sponding to the ith HO of the bond (Rm or Lm).

The next two contributions of Eq. (40), including
the operator Vrr(q, E), correspond to the third order
in the perturbation expansion. Therefore, they may
be only roughly estimated. The main assumptions
are the ZDO approximation and that the energies
of electron transfers between the subsystems are
replaced by average ones, depending only on the
number of bonds taking part in the electron transfer.
The cross term between the Vc(q) and Vrr(q, E) is

�Ecrr
k = 〈

�
appr
k

∣∣Vc(q)PQR(q, 0)QPVrr(q, E)
∣∣�appr

k

〉
≈

∑
pqq′∈R

∑
imjmj′m∈M

vqjmvq′j′m
∑
σσ ′τ

(pσpσ‖imσ ′ imσ ′ )

×
{

(Im − Ak − gmk)−1

×
[

Pσpp
k (1 − Pτq′q

k )�M
imσ ′ imσ ′ jmτ j′mτ (0)

− 2
π

∫
�Rk

pσ pσ q′
τ qτ

(iu)

×�M
imσ ′ imσ ′ jmτ j′mτ (iu) du

]

− (Ik − Am − gkm)−1

×
[

Pσpp
k Pτqq′

k �M
imσ ′ imσ ′ j̃mτ j̃′mτ

(0)

+ 2
π

∫
�Rk

pσ pσ qτ q′
τ
(iu)

×�M
imσ ′ imσ ′ j̃mτ j̃′mτ

(iu) du
]}

, (50)

where j̃ = r for j = l and j̃ = l for j = r. The integral
expressions can be replaced by sums using Eq. (44).
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Analogously, the cross term between VR(q) and
Vrr(q, E) equals

�ERrr
k = 〈

�
appr
k

∣∣VR(q)PQR(q, 0)QPVrr(q, E)
∣∣�appr

k

〉
≈ −

∑
στ

∑
pp′∈R

∑
A∈R

ZR
A

∑
jmj′m∈M

vpjmvp′j′m

×
{

(Im − Ak − gmk)−1(1 − Pτp′p
k

)

×
(
γARm�

M
rmσ rmσ jmτ j′mτ (0)

+ γALm�
M
lmσ lmσ jmτ j′mτ (0)

)
(51)

− (−1)δjj′ (Ik − Am − gkm)−1Pτpp′
k

×
(
γARm�

M
rmσ rmσ j̃mτ j̃′mτ

(0)

+ γALm�
M
lmσ lmσ j̃mτ j̃′mτ

(0)
)}

. (52)

The last contribution to the energy of Eq. (40) is of
the fourth order with respect to the perturbation
operator (counting four small operators of electron
transfer) and may be totally neglected.

Discussion

Large molecular systems are very important from
the practical point of view. Polymers and many
biological molecules contain hundreds and thou-
sands of atoms. Modern ab initio methods do not
allow the calculation of the electronic structure of
such systems because the computational time for
these methods grows as N4–N7, where N is number
of one-electron basis functions. Even for standard
semiempirical methods based on the Hartree–Fock
approximation this growth is proportional to N3.
It explains the special role of the hybrid QM/MM
schemes in computational chemistry. There is a
large diversity of hybrid QM/MM schemes pro-
posed in the literature due to the form of the junc-
tion between quantum and classical subsystems. It
leads to divergence of results obtained with differ-
ent junctions. The results of the calculations seem to
be ambiguous due to the uncontrolled influence of
the junction on the calculated PES of the molecular
system.

We try to justify the form of the junction between
subsystems. This problem is obviously close to that
of intermolecular forces. At the same time there
are some important differences: the hybrid schemes

require consideration of boundary atoms, the spe-
cial form of the wave function of inert subsystem
is required, and the resonance terms cannot be ne-
glected. The complete neglect of the junction, i.e.,
the use of the bare (ab initio) Hamiltonian for the
R subsystem and a standard molecular mechani-
cal procedure without renormalization leads to the
energy ER

k0 + EM
0 instead of the correct value Ek. Tak-

ing into account the interaction between the system
(junction) results in a correction to the PES, which
can be represented as a sum of contributions:

�Ek ≈ �Eel−st
k +�Err

k +�Edisp
k

+�Ecoul
k +�Ecrr

k +�ERrr
k , (53)

where the main contribution �Eel−st
k is of the first

order with respect to the perturbation operator
and originates from the electrostatic interaction be-
tween the subsystems; the next three contributions
are of the second order and follow from the cou-
pling of one-electron transfers between subsystems,
of Coulomb electron–electron interactions between
them, of interactions between electrons of the M
subsystem and cores of the R subsystem, and of
the interaction of the Coulomb electron–electron in-
teraction with the interaction of the electrons of
the M subsystem and cores of the R subsystem;
and the second term can be regarded as the dis-
persion interaction between subsystems. Moreover,
the contributions �Edisp

k and �Ecoul
k can be con-

sidered as the second-order interaction between
the electronic polarization in the M subsystem and
the polarized R subsystem. The last two contri-
butions to Eq. (53) correspond to the third order
in the interaction between the subsystems orig-
inating from the coupling two projection proce-
dures. Physically it corresponds to interaction be-
tween two one-electron transfers and the Coulomb
interaction between electrons of the M subsys-
tem with electrons and cores of the R subsys-
tem.

The APSLG approach used for description of the
classical part of the whole system is not valid for
description of highly delocalized groups. The AP-
SLG form of the M subsystem wave function affects
only the precise form of the resolvents entering the
formulae presented. The expressions for the correc-
tions to the energy in the R subsystem written with
use of these resolvents remain valid irrespective of
the specific form of the group function used for their
calculation.
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