
Crystal and electronic structure of the room temperature

organometallic ferromagnet V(TCNE)2. Analysis of numerical

DoS and magnetic properties as related to band and

spin-Hamiltonian models.

Andrei L. Tchougréeff∗

Poncelet Laboratory, Independent University of Moscow,

Moscow Center for Continous Mathematical Education,

Bolshoy Vlasyevskiy Pereulok 11, 119002, Moscow, Russia and

JARA, Institut für Anorganische Chemie,

RWTH Aachen, Landoltweg 1, 52056 Aachen, Germany

Richard Dronskowski

JARA, Institut für Anorganische Chemie,

RWTH Aachen, Landoltweg 1, 52056 Aachen, Germany

(Dated: March 15, 2009)

We present a detailed analysis of the results of our numerical study of the crys-

tal and electronic structure of the room temperature organometallic ferrimagnet

of general composition V(TCNE)x with x ≈ 2. The results of the LSDA+U study

show that the experimentally determined structure complies with the magnetic mea-

surements and thus can serve as a prototype structure for the entire family of the

M(TCNE)2 organometallic magnets. The results of the numerical study and of

the magnetic experiments are interpreted using model Hamiltonians proposed here.

This allowed us to obtain estimates of the critical temperature in three- and two-

dimensional regimes and to give an explanation of the differences in behavior of

probably isostructural V(TCNE)2 and Fe(TCNE)2 species.
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I. INTRODUCTION

The most spectacular room temperature organometallic magnet of composition

V(TCNE)x · ysolvent (where TCNE – 1 – stands for tetracyanoethylene – a well known

organic electron acceptor; x ≈ 2 and y depends on the type of the solvent) attracts a lot

of attention since the time it had been synthesized yet in the beginning of the 1990’s [1]

as an amorphous moisture sensitive precipitate. The outstanding critical temperature of

its magnetic transition estimated to be of ca. 400 K, i.e. higher than the decomposition

temperature (ca. 350 K ) singles it out among its numerous analogs which extend the

variety of involved organic acceptors (Ref. [2] – tetracyanopyrazine – 2; Ref. [3] – 7,7,8,8-

tetracyano-p-quinodimethane – 3; Ref. [4] – tetracyanobenzene – 4) and of the metals (Ref.

[5] – iron), synthesized in the following years, since none of them manifested as fascinating

magnetic properties as the first V(TCNE)2 compound (see Table 1 [6]).

Generally one has to say that not only the critical temperature, but also other properties

of the compounds of the considered class are sensitive to the details of the preparation

procedure. For example, the V-TCNE compound is known in two forms – the original of

Ref. [1] coming from the reaction of V(C6H6)2 with TCNE in the CH2Cl2 solution and

another obtained from V(CO)6 by the CVD technique. The latter exhibits the spontaneous

magnetization which is almost twice as strong at the zero temperature compared to that of

the original compound. For that reason hereinafter we shall refer to these two forms of the

V(TCNE)2 compound as the highly magnetic (HM) and the low magnetic(LM) ones.

For more than one decade the amorphousity of the compound of interest did not allow

anyone to make whatever definitive conclusion concerning its structure. The critical break-
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through became possible with the recent EXAFS work [7] where the authors were able to

establish the structure of the Fe2+ analog (presented in Fig. 1) of the V(TCNE)2 com-

pound and to reveal its most remarkable features: the presence of the dimer form of the

TCNE−̇ radical-anion: [TCNE]2−2 = C4(CN)2−
8 playing an important role in shaping the

loose three-dimensional structure and assuring as well the three-dimensional character of

magnetic interactions in the system.

In our previous paper Ref. [9] we were able to demonstrate that the experimental struc-

ture represented in Fig. 1 can be easily related with one represented in Fig. 2 proposed

yet in Ref. [8] in order to get in conform with the magnetic data on V-TCNE compound

available that time. That latter represented a simple cubic lattice with the vertices occupied

by the vanadium ions. Two ab-faces of each cube remain empty whereas four others are

filled by the TCNE units forming channels extended in the c-direction. In the structure

presented in Fig. 2 the C=C bonds of the TCNE units are located in the same plane (as

well perpendicular to the c-axis of the lattice) so that they are orthogonal to each other. It

is not the unique possibility. Alternatively one might consider a similar structure differing

from that of Fig. 2 by rotating the TCNE units placed in the bc-faces by 90◦ in their re-

spective planes. The result of such a rotation is presented in Fig. 3. In this structure the

central C=C bonds of the TCNE units are as previously orthogonal, but now they lay in

orthogonal planes so that the axes of these bonds do not intersect rather cross each other.

This structure has been called the ”principal” structure in Ref. [9]. The principal structure

Fig. 3 can be easily put in the relation with the experimental one. If in the quadrupled

unit cell 2a, 2b, c of the principal structure four TCNE units extended in the b-direction are

allowed to pairwisely rotate towards each other so that single C–C bonds can form between

respective ethylenic carbon atoms thus yielding the [TCNE]2−2 =C4(CN)2−
8 dimers and the

V-TCNE sheets originally laying in the ac-planes are accordingly ruffled one finally arrives

to the experimental structure of Fe(TCNE)2 (Fig. 1). Intermediate structures along this

hypothetical reaction path are presented in Fig. 4. For this sequence of structures we per-

formed in Ref. [9] the LSDA + U calculations with use of the VASP program suite Ref.

[10] of the respective electronic structures and energies. The calculations have been per-

formed as follows: first the principal structure with the equalized lattice parameters have

been quadrupled. This structure has been connected with the experimental structure by a

straight line in the configuration space. Further details of the numerical treatment can be
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found in Ref. [9]. Its results are reproduced in Fig. 5.

The overall densities of states in two spin channels as given in Fig. 5 are obviously

difficult to understand. One can only see some spin polarization of the upper filled bands

as well as an evolution of a noticeable density of states near the Fermi level present in

both spin channels in the initial state to the final state where the expected spin-polarized

structure can be recognized which does not show any DoS in either of the spin channels at

the Fermi level. In the present paper we provide an extended analysis of the DoS’s obtained

along the sequence of structures presented in Fig. 4and the spin-Hamiltonian derived from

these calculations together with the model of the basic physical properties of the V(TCNE)2

organometallic ferrimagnet and compare it with those of Fe(TCNE)2.

II. DETAILED ANALYSIS OF DOS

In order to analyse the details of the evolution of the DoS features along the path going

from quadrupled principal structure to the experimental one we performed a detailed study

of projections of the DoS. In the initial the three bands in the −14 ÷ −16 eV range are

predominantly C-bands as are those in the −9 ÷ −11 eV range. Other bands are the well

hybridized C-N-bands except the ”spin-left” band right below the Fermi level, which is

predominantly contributed by the vanadium states. As one can see from Fig. 6 these are

the d-states of vanadium atoms. Some vanadium stemming DoS in the range −8 ÷−10 eV

are the s- and p-states of vanadium involved in the bonding with the nitrogen atoms, which

can be seen on the corresponding N-projection of DoS in Fig. 7 from which one can deduce

that the s- and p-states of vanadium hybridize predominantly with the N-states coming

from the V-TCNE layers (see below). The lowest visible narrow band slightly above −20

eV is almost equally contributed by the N- and C-states of the V-TCNE layers (with some

excess of the N-states). In order to deepen our understanding of the DoS presented in Fig.

5 one can notice that even in that complex system the atoms involved are relatively easily

classified into types. One can distinguish transition metal ions whose d-density is expected

to contribute significantly to the spin polarized bands, the nitrogen atoms where one can

expect significant DoS changes due to expected break of the pairs of excessive V-N bonds

while going from the quadrupled principal structure to the experimental one. Analogously

along the same route one can expect remarkable variations in the projection of the DoS to
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the carbon atoms forming the C-C bonds in the [TCNE]2−2 units and to the carbon and

nitrogen atoms in the ruffled V-TCNE layers. Other features of the DoS, however, are

not expected to significantly vary along the path. Considering the evolution of the above-

mentioned projections of the DoS along the path Fig. 4 as represented in Figs. 6 - 8 one

can see the expected reconstruction of the projected DoS’s. For example, almost nothing

happens to the d-bands along this path. They remain rigid triply degenerate ones and do

not change their position relative to the Fermi level despite the fact that the coordination

number of vanadium ions changes from eight in the quadrupled principal structure to six in

the experimental one. This agrees with the numerical result concerning the distribution of

spin polarization in the direct space since for all structures depicted in Fig. 4. The magnetic

moments residing in the d-shells of vanadium ions range from 2.615 for the first (quadrupled

principal) structure to 2.582 for the last (experimental) one i.e. are almost constant. The

significant variation of the total magnetic moment along the ”reaction path” observed in

our numerical experiment thus is to be almost completely attributed to variation of the

magnetic moments residing in the ”organic” part of the organometallic magnet. This is

precisely what one should expect within the general picture including the formation of the

[TCNE]2−2 dimers. On the other hand the stability of the d-bands along the path can be

only understood if one assumes that the break of two V-N bonds at each atom is at least

partially compensated by shortening (strengthening) of other two bonds extended in the

b-direction.

By contrast the projections of DoS to the characteristic organogenic atoms significantly

modify along the ”reaction path”. For example, the projection of DoS on the nitrogen atoms

as represented in Fig. 7 completely disappears from the band positioned at −17 eV in the

initial structure where it contributes ca. 50 % of the intensity incidentally equally provided

by the both types of the N atoms extended in the b-direction. In the final structure this band

expectedly disappears yielding its density to the band at ca. −20 eV which now becomes

double-peaked. The structure of the latter band is, however, more complicated since in fact

all three types of the N atoms defined above contribute to it. The dominant part of the

N-DoS is concentrated in two broad bands at ca. −5 and ca. −7 eV. Although the lower

of the two is predominantly contributed by the V-TCNE layer nitrogens neither the band

itself nor the dominant contribution to it are spin-polarized. The same applies to somewhat

smaller contribution from the bonding N-atoms extended in the b-direction to this band.
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Their contribution to the upper of the two mentioned bands is, however, noticeably spin-

polarized. The density from the N atoms bearing the dangling lone pairs fairly manifests

itself in the same band. Weak features in the N-DoS can be observed in the 4 eV wide

range right below the Fermi level. The peak right below the Fermi level in the ”right-spin”

channel in the initial structure is equally contributed by the ”bonding”, ”to be dangling”,

and ”magnetic” nitrogens. (In general the DoS projections for the ”bonding” and ”to be

dangling” nitrogens coincide in the initial structure). In the final structure this peak splits

so that its upper part (”right-spin” channel right below the Fermi level) is contributed by

the ”magnetic” nitrogens, whereas the peak next to it in the bottom direction is contributed

by the ”bonding” nitrogens. The contribution from the ”dangling” nitrogens sinks in a wide

band at ca. −5 eV.

Of particular importance is the evolution of the C-projection of the DoS. Among them

that on the ethylenic carbon atoms are most interesting. They can be further subdivided

in two categories: those in the planes extended in the a-c horizontal directions and those

extended in the vertical (b) direction and further involved in the rotation leading to formation

of the [TCNE]2−2 units. At the initial stage both projected DoS are significantly polarized

and both noticeably contribute to the ”right-spin” density right below the Fermi level. From

further graphs of the DoS projected to the atoms forming the emerging C-C bonds one can

conclude that such bonds represented in our study by two spin sub-bands for the left and

right spin channels completely develop at a pretty late stage of the hypothetical transition.

By contrast the projection of DoS on the magnetic C-atoms in the horizontal planes develop

two sub bands right above and below the Fermi level of which the lower one (right-spin) is

completely occupied by electrons with the spin projection opposite to that of the electrons

occupying the d-subband. This is in the fair agreement with the assumption concerning

the nature of the subbands located in the vicinity of the Fermi level made in our previous

paper Ref. [9]. The only other manifestation of the C-C bond formation is some minor

although noticeable downshift and broadening of the corresponding projected DoS in the

range −9 ÷−18 eV.
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III. MODEL HAMILTONIANS FOR V-TCNE SYSTEM

A. Model Orbital Hamiltonian

Fascinating properties of the V(TCNE)2 magnet call not only for numerical modelling,

but also for some qualitative picture. However, for the final (”experimental”) structure all

the DoS projections manifest themselves as very narrow bands. This indirectly indicates

that the band picture used throughout the calculations is not completely adequate and that

an adequate model must be given in terms of an effective Hamiltonian representing the

electronic structure of the V(TCNE)2 magnet (in its ”experimental” structure) in terms of

some objects local in the direct space e.g. local spins similar to that proposed yet in Ref.

[8]. As in the case of band models the most important one-electron states to be included

are these contributing to the energy bands in the vicinity of the Fermi level. Based on

our analysis of projected DoS performed in the previous Section we can conclude that the

states of the [TCNE]2−2 units contribute to the bands far away from the Fermi level. The

DoS related to this unit goes away from the Fermi level along the ”reaction path”. Thus

the observed electronic structure is primary one of the individual (ruffled) V-TCNE layer

extended in the ac-plane. For constructing the Hamiltonian for this layer one can employ the

unit cell of the principal model dropping from it the TCNE unit extended in the b-direction

(and finally engaged in formation of the [TCNE]2−2 = C4(CN)2−
8 dimers). According to Ref.

[8] on the vanadium sites it suffice to consider only the d-shells of the metal ions. The overlap

of the d-shell of the metal ions with the σ-orbitals of the TCNE’s (including those implied

in the model) ensures the standard two-over-three splitting of the d-shell characteristic for

the octahedral environment. In the case of vanadium three unpaired electrons in the d-shell

occupy respectively three orbitals in the t2g-manifold. The basis orbitals dxy, dxz, and dyz

can be characterized by the normal to the plane in which each of the orbitals lays – ζ, η,

and ξ – are subsequently used in the notation. For the donor sites in the ruffled planes the

b3g (π∗) LUMOs of the TCNE (singly occupied in the radical anion) are included. In each

such a layer each metal ion is surrounded (coordinated) by four TCNE units which are in

their turn coordinated to (surrounded by) four metal atoms. In this case the layer unit cell

composition V:TCNE is 1:1.

The model Hamiltonian for the V(TCNE)2 magnet, formulating the above ideas, has the
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general form:

H =
∑

r

(Hd(r) + Ha(r) + Hda(r) + Hdd(r)) (1)

The contributions to it are the following. Operator Ha(r) describes electrons in the acceptor

orbital of the TCNE−̇ radical-anion in the r-th unit cell:

Ha(r) = −αan̂ar + Uaan̂ar↓n̂ar↑

n̂arσ = a+
rσarσ; n̂ar =

∑

σ n̂arσ

(2)

Symbol a+
rσ(arσ) is the operator creating (annihilating) an electron with the spin projection

σ on the acceptor orbital of the TCNE molecules in the r-th unit cell. In eq. (2) the first

term is the energy of attraction of an electron to the core of TCNE – the orbital energy of the

b3g (π∗) LUMO shifted by the electrostatic field induced by the entire crystal environment.

The second term in eq. (2) is the Hubbard one, effectively describing the Coulomb repulsion

of electrons with opposite spin projections eventually occupying the same acceptor orbital.

The operator Hd(r) describes electrons in the t2g-subshell of the d-shell of the vanadium

ion in the r-th unit cell:

Hd(r) = [−αd(n̂ζr + n̂ηr + n̂ξr) +

+ (Udd + 2Jdd)(n̂ζr↓n̂ζr↑ + n̂ηr↓n̂ηr↑ + n̂ξr↓n̂ξr↑)] +

+
(Udd + Jdd/2)

2

∑

σ,σ′

(n̂ζrσn̂ξrσ′ + n̂ζrσn̂ηrσ′ + n̂ξrσn̂ηrσ′) + (3)

−4Jdd(ŜζrŜξr + ŜζrŜηr + ŜξrŜηr)

n̂γrσ = γ+
rσγrσ, n̂γr =

∑

σ

n̂γrσ; γ = ξ, η, ζ.

In eq. (3) n̂γrσ are the operators of the number of electrons with the spin projection σ on

the dxy, dyz, and dxz orbitals of the vanadium ion in the r-th unit cell. The spin operators

and spin-operator product terms are defined by the well-known relations:

ŜγrŜγ′r = 1/2(Ŝ+
γr

Ŝ−
γ′r

+ Ŝ+
γ′r

Ŝ−
γr

) + Ŝz
γr

Ŝz
γ′r

Ŝ+
γr

= γ+
r↑γr↓, Ŝ

−
γr

= γ+
r↓γr↑, Ŝ

z
γr

= 1/2(n̂γr↑ − n̂γr↓).

where the symbols γ+
rσ (γrσ) represent the operators creating (annihilating) an electron with

the spin projection σ on the dxy, dyz, and dxz orbitals of the vanadium ion in the r-th unit

cell.
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The first row in the above operator describes the attraction of electrons in the d-orbitals

to the cores of vanadium ions (shifted by the electrostatic field of the rest of the crystal).

Two further rows describe the spin-symmetric part of the Coulomb interaction of electrons

in the d-shell. The last row describes the spin dependent part of the Coulomb interaction of

electrons in the d-shell (exchange). It is ultimately responsible for the Hund’s rule in atoms

and for the high spin of the ground state of electrons in the d-shell. The contributions to

the Hamiltonian eq. (1) described so far model isolated local states important for the crys-

tal description. The magnetic order can only be possible due to various interaction terms.

Operator Hda(r) describes the electron hopping between the d-states of vanadium ions and

the acceptor states. The dxy-state represented by the ζ+
rσ (ζrσ) operators being of the (ap-

proximate) σ-symmetry with respect to the ac plane (the ruffling of the V-TCNE plane is

neglected) has no overlap with the LUMO’s of TCNE’s which are (again approximately)

of the π-symmetry with respect to the same plane. Two others (dxz- and dyz-states repre-

sented respectively by the η+
rσ (ηrσ) and ξ+

rσ (ξrσ) operators) overlap with the LUMOs of two

(different) neighbor TCNE units each. The phase relations between the orbitals involved in

the model lead to such a distribution of signs at the one-electron hopping parameters that

the hopping operator acquires the form:

Hda(r) = −tda

∑

σ

[

ξ+
rσ (arσ + ar+a+cσ) − η+

rσ (ar+aσ + ar+cσ)
]

+ h.c. (4)

where the parameter tda > 0 describes the magnitude of the hopping between the acceptor

state and the neighbor d-state.

The sum of the above contributions to the effective Hamiltonian in fact form that for an

isolated V-TCNE layer. In the ”experimental” structure the diamagnetic C4(CN)2−
8 units

seem to effectively isolate the V(TCNE) sheets from each other. Nevertheless, one should

assume that certain indirect interaction between the d-states in the b-direction is possible

through the mediation of the [TCNE]2−2 units. It was proposed in Ref. [9] to use an effective

hopping similar to eq. (4). Since it is any way an effective interaction it can be chosen in a

way which fits better to the method the system is treated. For this reason we postpone the

discussion of this term.
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B. Spin Hamiltonian as derived from orbital model Hamiltonian

In our previous paper Ref. [9] we considered the band model of the V-TCNE organometal-

lic magnet as derived from the orbital Hamiltonian eqs. (1) - (4) and employed them for

analysis of results of our numerical experiments performed with use of the VASP package.

These latter are, however, in a kind of fundamental contradiction with the physics of the

system at hand. This manifests itself in the very narrow bands coming out of calculation, as

we already mentioned. The reason is that the hopping parameter tda entering eq. (4) which

are generally responsible for extension of one-electron states over the crystal (band forma-

tion) and which are proportional to the overlap between the orbitals represent the smallest

energy scale in the system. Generally it leads to a break of the delocalized (band) picture

and makes a local description to be more adequate. The latter can be sequentially derived

by treating perturbatively the hopping operator eq. (4). It yields the effective Hamiltonian

of the Heisenberg form in terms of the spins of electrons occupying the local states (orbitals)

involved. Its parameters can be estimated as follows.

For a pair of the TCNE−̇ and V2+ ions described by the Hamiltonians, eqs. (2) and (3),

respectively, the energy of the ground state reads:

E0 = −αa − 3αd + 3Udd − 3/2Jdd (5)

Two states with one electron transferred between the two sites (from one of the d-states to

the a-state and from the a-state to one of the d-states) contribute to the effective exchange

interaction. The energies of the charge transfer states are respectively:

Ed→a = −2αa − 2αd + Uaa + Udd − Jdd/2

Ea→d = −4αd + 6Udd + 7/2Jdd

The result of the perturbational treatment of electron hopping between the sites leads, as

usual, to a Heisenberg-type interaction of two 1/2 electron spins:

2KdaŜγrŜar (6)

occupying the overlapping orbitals (here γ refers to that of the three d-orbitals which overlaps

with the particular a-orbital) with the effective exchange constant given by:

Kda = t2da(∆E−1
d→a + ∆E−1

a→d) > 0, (7)
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where

∆Ed→a = αd − αa + Uaa − 2Udd + Jdd = ∆α + Uaa − 2Udd + Jdd > 0,

∆Ea→d = αa − αd + 3Udd + 5Jdd = −∆α + 3Udd + 5Jdd > 0,

∆α = αd − αa > 0; ∆Ea→d > ∆Ed→a.

On the other hand the charge transfer energies can be expressed through the spectral ioniza-

tion potentials of the respective ions, their electron affinities and the energy shifts of these

quantities induced by the Coulomb field of the surrounding crystals already mentioned:

∆Ed→a = Id − Aa − gad > 0, ,

∆Ea→d = Ia − Ad − gad > 0,

Id = I0
d − Cd > 0; I0

d = α0
d − (nd − 1)Udd (8)

A0
d = I0

d − Udd

Ia = α0
a − Ca > 0.

(here we omitted the intraatomic exchange parameters Jdd known to be by orders of mag-

nitude smaller than other quantities relevant here).

The interaction eq. (6) must be repeated for each interacting pair of electronic spins

(pair of orbitals, coupled by the electron hopping operator). For the V ion in the crystal the

terms appear for the ξ− and η-states on each atom. The overall result comes out as a spin

Hamiltonian of the form:

H layer
spin = −4Jdd

∑

r

(ŜζrŜξr + ŜζrŜηr + ŜξrŜηr)+

+2Kda

∑

r

[

Ŝξr

(

Ŝar + Ŝar+a+c

)

+ Ŝηr

(

Ŝar+a + Ŝar+c

)] (9)

which describes effective magnetic interactions in an isolated layer. It must be complemented

by interlayer interactions. If the vanadium ions in adjacent layers are coupled by an an ef-

fective hopping an analogous perturbative procedure results in the antiferromagnetic sign of

the effective magnetic interaction. This contradicts to the existence of the nonzero overall

magnetization in the V-TCNE magnets below the critical temperature (with the antiferro-

magnetic interlayer coupling the magnetization of one layer would be cancelled by that of

another). For that reason we have to supplement the Hamiltonian eq. (9) by an effective

interlayer interaction with the ferromagnetic sign of the corresponding exchange parameter.
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It cannot directly come from any perturbative treatment of the hopping. By contrast some

mechanism of ferromagnetic coupling described e.g. in Refs. [11] or [12] and implemented

in papers [13, 14] devoted to the exchange in metallocene based organometallic magnets

(Miller-Epstein magnets) acting through the [TCNE]2−2 units might be expected. Indeed as

one can see from the Fig. 9 despite the fact the the states located in the [TCNE]2−2 units

are pulled up and down from the vicinity of the Fermi level, some spin polarization of these

bands particularly of those which are contributed by the ”bonding” nitrogens indicates the

involvement of the [TCNE]2−2 units in transfer of magnetic interactions between the d-shells

in the b-direction (between the layers).

With this caveat the spin Hamiltonian written in terms of ”true” electronic spins is the

following:

Hspin = −4Jdd

∑

r

(ŜζrŜξr + ŜζrŜηr + ŜξrŜηr)+

+ 2Kda

∑

r

[

Ŝξr

(

Ŝar + Ŝar+a+c

)

+ Ŝηr

(

Ŝar+a + Ŝar+c

)]

+ 2Kdd

∑

r

(

Ŝξr + Ŝηr + Ŝζr

) (

Ŝξr+b + Ŝηr+b + Ŝζr+b

)

(10)

The Hamiltonian eq. (10) is not a standard Heisenberg Hamiltonian usually used to describe

magnetic properties of insulators. This latter is written in terms of the effective local spins

residing at each atomic magnetic center. In our case the vanadium ions represetn such

nontrivial magnetic centers bearing effective spins in the d-shells:

Ŝdr =
∑

γ

Ŝγr. (11)

According to Ref. [15] using the effective spins is, however, an approximation since the

transition from the representation of the effective Hamiltonian in terms of the of individ-

ual electronic spins-1
2

eq. (10) which can be sequentially derived from the model orbital

Hamiltonian eqs. (1) - (4) by perturbative treatment of the hopping term eq. (4) to the

phenomenological Hamiltonian eq. (12) operating with the effective spins eq. (11) is only

possible if the exchange interactions of all individual spins in one magnetic center (in our

case – the V ion) with those in the other magnetic center (in our case the effective spin in

TCNE−̇ coincides with the individual one) are equal. This is obviously not the case since

the electronic spin Ŝζr in the d-shell to the first approximation does not interact with the

spin residing in any of acceptor orbitals.
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This generally poses the problem since in the Hamiltonian eq. (10) at least the exchange

parameters Jdd and Kda can be independently determined respectively by eq. (7) and atomic

spectra, whereas the parameter J⊥ in eq. (12) remains completely empirical quantity. The

fact that Jdd ≫ Kda in eq. (10) allows to approximately replace the spins of separate

electrons in the r-th d-shell by the operator of the total spin of the respective d-shell.

Further details of this transition are given in the next Section.

C. Phenomenological Hamiltonian for effective spins and its relation to the spin

Hamiltonian

The phenomenological Hamiltonian written in terms of the effective spins eq. (11) to be

used for modeling the entire crystal is:

Hphen = J‖

∑

r

Ŝdr

[

Ŝar + Ŝar+a + Ŝar+c + Ŝar+a+c

]

+

+J⊥

∑

r

ŜdrŜdr+b

(12)

In order to obtain it we follow the general recipes given in Ref. [15] for obtaining the spin-

wave spectrum and write the general Heisenberg equations of motion for the spin-raising

operators Ŝ+
dr, Ŝ

+
ar. They read:

i~ ∂
∂t

Ŝ+
dr = −J⊥

(

Ŝz
drŜ

+
dr±b

− Ŝ+
drŜ

z
dr±b

)

+J‖

[

Ŝz
dr

(

Ŝ+
ar + Ŝ+

ar+a+c + Ŝ+
ar+a + Ŝ+

ar+c

)

− Ŝ+
dr

(

Ŝz
ar + Ŝz

ar+a+c
+ Ŝz

ar+a
+ Ŝz

ar+c

)]

i~ ∂
∂t

Ŝ+
ar = J‖

[

Ŝz
ar

(

Ŝ+
dr + Ŝ+

dr−a−c
+ Ŝ+

dr−a
+ Ŝ+

dr−c

)

− Ŝ+
ar

(

Ŝz
dr + Ŝz

dr−a−c
+ Ŝz

dr−a
+ Ŝz

dr−c

)]

(13)

In the spin-wave approximation the operators Ŝz
d and Ŝz

a are replaced by their average values

in the magnetic (ordered) phase:

Ŝz
dr →

〈

Ŝz
d

〉

=
3

2
; Ŝz

ar →
〈

Ŝz
a

〉

= −1

2
(14)

so that the equations of motion get the form:

i~ ∂
∂t

Ŝ+
dr = −J⊥

(

3
2
Ŝ+

dr±b
− 3Ŝ+

dr

)

+J‖

[

3
2

(

Ŝ+
ar + Ŝ+

ar+a+c + Ŝ+
ar+a + Ŝ+

ar+c

)

+ 2Ŝ+
dr

]

i~ ∂
∂t

Ŝ+
ar = J‖

[

−1
2

(

Ŝ+
dr + Ŝ+

dr−a−c
+ Ŝ+

dr−a
+ Ŝ+

dr−c

)

− 6Ŝ+
ar

]

.

(15)
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Going to the Fourier transforms of the raising operators we get:

i~ ∂
∂t

Ŝ+
dk = −3J⊥ (cos kb − 1) Ŝ+

dk + J‖

[

3
2
ΩkŜ

+
ak + 2Ŝ+

dk

]

i~ ∂
∂t

Ŝ+
ak = −J‖

[

Ω∗

k

2
Ŝ+

dk + 2Ŝ+
ar

]

Ωk = 1 + exp(ika) + exp(ikc) + exp(ika + ikc)

(16)

which must be complemented by analogous system of equations for the spin lowering op-

erators Ŝ−
dr, Ŝ

−
ar. On the other hand the Heisenberg equations of motion for the operators

Ŝ+
ζr, Ŝ

+
ηr, Ŝ

+
ξr, and Ŝ+

ar as derived from eq. (10) (after the Fourier transformation is performed)

form a system of four equations of motion for the Fourier components of the spin-1
2

raising

operators for each wave vector k. It can be rewritten with use of k-dependent 4×4 matrices

acting on the vectors Ŝ+
k

with the components Ŝ+
ζk, Ŝ

+
ηk, Ŝ

+
ξk, Ŝ

+
ak:

i~
∂

∂t
Ŝ+

k
= M(k)Ŝ+

k
(17)

where

M(k) = A + T (k) + L(k) (18)

and the matrix

A = Jdd















4 −2 −2 0

−2 4 −2 0

−2 −2 4 0

0 0 0 0















(19)

describes the spin fluctuations in the d-shells, the matrix

T (k) = Kdd















coskb















1 1 1 0

1 1 1 0

1 1 1 0

0 0 0 0















− 3















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0





























(20)

describes the spin wave propagation in the b-direction (transversal to the V-TCNE) planes

and the matrix

L(k) = Kda















0 0 0 0

0 1 0 1
2
Qck

0 0 1 1
2
Qak

0 −1
2
Q∗

ck −1
2
Q∗

ak −2















(21)
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with

Qak = 1 + e−ika−ikc

Qck = e−ika + e−ikc

(22)

desribes the spin-wave propagation in the ac-plane i.e. in the individual V-TCNE layer.

Going to the linear combitations of the spin fluctuation operators in the d-shell: Ŝ+
ζk + Ŝ+

ηk +

Ŝ+
ξk; −Ŝ+

ζk + Ŝ+
ηk; −Ŝ+

ζk + Ŝ+
ξk introduces the fluctuation of the effective spin of the d-shell

(the first combination) and incidentaly diagonalizes the sum of the first two matrix terms

A + T (k) yielding the eigenvalues: 0; 3Kdd (coskb − 1) ; 6Jdd − 3Kdd > 0 of which the zero

one refers to precession of the 1
2

spin in the acceptor orbital, the next one refers to precession

of the total spin of the d-shell, and the doubly degenerate highest eigenvalue corresponds to

excitations changing the total spin of the d-shell. The interaction matrix L(k) in this basis

acquires the form:

Kda

6















−12 Q∗
ck − 2Q∗

ak Q∗
ak − 2Q∗

ck −Q∗
ak − Q∗

ck

3Qak 4 −2 2

3Qck −2 4 2

3 (Qak + Qck) 2 2 4















(23)

The states corresponding to the excitations of the d-shell (the above matrix is written so

that they are the second and the third ones) are of much higher energy than the states

corresponding to precession of the effective spins in two types of sites of the model. For

that reason the former can be excluded. To do so we treat L(k) as a perturbation with

the smallness parameter Kda

Jdd

and in the zero order we obtain an operator acting in the two-

dimensional subspace spanned by the vector with the components Ŝ+
ζk+Ŝ+

ηk+Ŝ+
ξk = Ŝ+

dk; Ŝ+
ak:





−2Kda −1
6
(Q∗

ak + Q∗
ck) Kda

1
2
(Qak + Qck) Kda

2Kda

3
− 3Kdd (1 − cos kb))



 (24)

Comparing eq. (24) with eq. (16) and noticing that Ωk = Q∗
ak + Q∗

ck we arrive to the con-

clusion that they coincide after setting
∣

∣Sz
ξ

∣

∣ =
∣

∣Sz
η

∣

∣ = 1
2

= 1
3
|Sz

d | and Kdd = −J⊥; Kda = 3J‖

which establishes the required relation between the spin wave treatments of the Hamiltonians

eq. (10) and eq. (12). The first order correction to eq. (24) has the form:

K2
da

9Jdd





1
2
(2 − cos ka − cos kc + 2 cos kc cos ka)

1
12

Ω∗
k

−1
4
Ωk

1
3



 , (25)

but it is not used hereinafter.
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IV. MAGNETIC PROPERTIES OF V(TCNE)2 AS DERIVED FROM

PHENOMENOLOGICAL HAMILTONIAN

The magnetic and thermodynamic properties of the V(TCNE)2 material must be derived

from the phenomenological Hamiltonian eq. (12). However, even the mean field estimates of

these properties used so far in the literature lack the account of structural information. It is

important to realize that the quantities of interest are sensitive to these details as represented

in the respective Hamiltonians. For that reasons we analyse here these dependencies.

A. Mean Field treatment of the phenomenological Hamiltonian.

In order to obtain a structure dependent mean field estimate for the Néel temperature

of the V-TCNE material we use the method described in Ref. [20]. Accordingly the Néel

temperature for a system comprising two types of magnetic centers with effective spins Sd

and Sa so that each center of the with spin Sd has Zdd neighbours of the same type, Zda

neighbours with the spin Sa etc. with the interactions between the nearest neighbors of the

specific type given by Jdd, Jda etc. satisfies the equation:

∣

∣

∣

∣

∣

∣

JddZddSd (Sd + 1) − 3θMF
N JdaZdaSd (Sd + 1)

JdaZadSa (Sa + 1) JaaZaaSa (Sa + 1) − 3θMF
N

∣

∣

∣

∣

∣

∣

= 0

where we used the fact that Jad = Jda. For the structure represented in Fig. 1 and modelled

by the Hamiltonian eq. (12) we set Sa = 1
2
. Then Zad = Zda = 4; Zdd = 2; Zaa = 0 (acceptors

do not have acceptor neighbors in this model). In the notation of eq. (12) Jdd = J⊥; Jda = J‖,

so that we obtain:

θMF
N =

2J⊥

3
Sd (Sd + 1) +

√

J2
⊥

9
S2

d (Sd + 1)2 +
4

3
J2
‖Sd (Sd + 1)

which in the limit of strong anisotropy yields the following mean field estimate:

θMF
N =

2J⊥

3
Sd (Sd + 1) + J‖

√

4

3
Sd (Sd + 1) (26)

which flows to the the limiting expression used in Ref. [7] for the single Fe-TCNE layer

with the variance of the factor of two which results from the different definition of the

Hamiltonian in Refs. [7, 20]. It is important to notice that the commonly used (see e.g.
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Ref. [6]) symmetric mean field formula which ignores the acceptor spins:

θMF
N =

zJeff

3
Sd (Sd + 1)

and sets z to be the number of indirectly neighboring magnetic metal ions yields the estimates

of the effective interactions which must differ significantly from the estimate eq. (26) since

in the latter the dependence of the critical temperature on the spin of the metal ion is

quadratic rather than effectively linear.

B. Spin-wave model of magnetic properties of V(TCNE)2

Now we address the spin-wave theory of the V(TCNE)2 ferrimagnet described by the

phenomenological Hamiltonian eq. (12) in order to tentatively model its magnetic properties.

The temperature dependence of magnetization and the Néel temperature (that at each the

magnetization of each sublattice vanishes) are controlled by the spectrum of the lowest

energy excitations: spin waves (magnons). Calculation of these properties is customary

performed with use of the Holstein-Primakoff Ref. [16] representation of the magnons. This

latter had been many times derived for the ferrimagnets with relatively simple crystal lattice

Refs. [17, 18]. The present case differs from those described there by a combination of the

alternation of the interaction sign (J‖ and J⊥ have opposite signs) and a relatively complex

form of the structure factors. This prevents from using directly the the general formulae so

that we perform the required derivation for the present structure for certainty. It evolves as

follows. Each term in the Hamiltonian has the form:

J12Ŝ1Ŝ2 = J12

[

Ŝz
1 Ŝ

z
2 +

1

2

(

Ŝ+
1 Ŝ−

2 + Ŝ−
1 Ŝ+

2

)

]

(27)

If the pair of the above spins couples ferromagnetically (J12 < 0) the Holstein-Primakoff

operators bi(b
+
i ) annihilating (crearing) an elementary excitation (magnon) at the i -th site

are introduced by the standard relations:

Ŝ+
i =

√

2Si − n̂ibi

Ŝ−
i = b+

i

√

2Si − n̂i (28)

Ŝz
i = Si − n̂i; n̂i = b+

i bi

The operators bi(b
+
i ) so defined obey the boson commutation relations:

[

b+
i , b+

i′

]

= [bi, bi′ ] = 0;
[

b+
i , bi′

]

= δii′ (29)
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After being inserted in the above expression for the Hamiltonian term the square roots are

expanded andthe terms non higher of the second order in the boson operators bi are kept so

that one gets:

J12Ŝ1Ŝ2 = J12S1S2 − J12 (S1n̂2 + n̂1S2) + J12

√

S1S2

(

b+
1 b2 + b+

2 b1

)

(30)

If the pair of effective spins is coupled antiferromagnetically (J12 > 0) the Holstein-Primakoff

bosons are obtained by a more complex technique which, first, requires a transformation of

the spins residing on the m-th site by the rotation matrices ωm:

S̃i = Ŝiωi; Ŝi = ω†
i S̃i (31)

In the assumption of the common quantization axis for all spins in the crystallographic unit

cell one can select the rotations as follows:

ω1 =











1 0 0

0 1 0

0 0 1











; ω2 =











1 0 0

0 −1 0

0 0 −1











(32)

in the basis of the coordinate spin components x, y, z or

ω1 =











1 0 0

0 1 0

0 0 1











; ω2 =











0 1 0

1 0 0

0 0 −1











(33)

in the basis of the tensor spin components +,−, z. Then the interaction term rewrites:

J12Ŝ1Ŝ2 = −J12Ŝ
z
1 S̃

z
2 +

1

2
J12

(

Ŝ+
1 S̃+

2 + Ŝ−
1 S̃−

2

)

(34)

The boson operators for the transformed spins are then defined by the same relations as the

nontransformed ones which yields the following interaction term:

J12Ŝ1Ŝ2 = −J12S1S2 + J12 (S1n̂2 + n̂1S2) + J12

√

S1S2

(

b+
1 b+

2 + b1b2

)

(35)

where the anomalous products b+
1 b+

2 and b1b2 appear.

Analogous procedure applies to each pair of the interacting spins (J‖ > 0; J⊥ < 0) in the

Hamiltonian eq. (12) yielding the following:

HSW =
∑

r

(

−4J‖SaSd + J⊥S2
d + 4J‖ (n̂arSd + San̂dr) − 2J⊥Sdn̂dr

+J‖

√

SaSd [Dr (Ar + Ar+a + Ar+c + Ar+a+c) (36)

+ D+
r

(

A+
r

+ A+
r+a

+ A+
r+c

+ A+
r+a+c

)]

+ J⊥Sd

(

D+
r
Dr+b + D+

r+b
Dr

))
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where D+
r
(Dr) and A+

r
(Ar) are the magnon creation (annihilation) operators at the respec-

tive sites in the crystals and the number of magnons operators necessary to calculate the

magnetization at each site are:

n̂ar = A+
r
Ar; n̂dr = D+

r
Dr (37)

Introducing the Fourier transforms of the magnon creation operators by the relations:

D+
r

=
1√
N

∑

k

exp(−ikr)D+
k
;

A+
r

=
1√
N

∑

k

exp(−ikr)A+
k

(38)

and by the corresponding ones for the annihilation operators we obtain the spin-wave Hamil-

tonian in the form:

HSW =
∑

k

(

4J‖

(

SdA
+
k
Ak + SaD

+
k
Dk

)

+J‖

√

SaSd

[

Ω∗
k
DkA−k + ΩkD

+
k
A+

−k

]

(39)

+ 2J⊥Sd (cos kb − 1) D+
k
Dk

)

where the unnecessary constant is omitted and the structure factors Ωk coincide with those

defined by eq. (16).

The above Hamiltonian produces equations of motion for the creation and annihilation

operators which are coupled due to the presence of the anomalous terms:

i~Ȧk = 4J‖SdAk + J‖

√

SaSdΩ−kD
+
−k

i~Ḋ+
k

= −4J‖SaD
+
k
− J‖

√

SaSdΩ
∗
k
A−k + 2J⊥Sd (cos kb − 1) D+

k
(40)

i~Ḋk = 4J‖SaDk + J‖

√

SaSdΩkA
+
−k

− 2J⊥Sd (cos kb − 1) Dk

i~Ȧ+
k

= −4J‖SdA
+
k
− J‖

√

SaSdΩ
∗
−k

D−k

One can easily see that in the above system the first one is coupled only to the second

whereas the third one is coupled only with the fourth. Thus eq. (40) reduces to a pair of

2×2 matrix eigenvalue/eigenvector problems to be solved for the stationary magnons:





4Sd − εk

√
SaSdΩ−k

−
√

SaSdΩ
∗
−k

−4Sa + 2Sdak − εk









uk

−vk



 = 0 (41)
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



4Sa − 2Sdak − εk

√
SaSdΩk

−
√

SaSdΩ
∗
k

−4Sd − εk









xk

−yk



 = 0 (42)

with the annihilation operators given by the relations:

Fk = ukAk − vkD
+
−k

(43)

Gk = xkDk − ykA
+
−k

(44)

and where

ak =
J⊥

J‖

(1 − cos kb) (45)

The matrix eigenvalue problems eqs. (41), (42) each yield two solutions for εk of which one

is negative in either case and must be rejected (see Ref. [15]). The nonegative solutions of

both problems represent the spectrum of magnon excitations having the form:

ε±
k

= Γk ± (2(Sd − Sa) + Sdak) (46)

Γk =

√

(2(Sd + Sa) − Sdak)
2 − SdSa |Ωk|2

where the ”−” sign corresponds to the gapless band with the magnon annihilation operators

Gk, whereas the ”+” sign in the expression for the energy corresponds to the excitations

with a gap and the magnon annihilation operators Fk.

The site populations by the magnons are given by

〈n̂ar〉 =
1

N

∑

k

〈

A+
k
Ak

〉

; 〈n̂dr〉 =
1

N

∑

k

〈

D+
k
Dk

〉

(47)

where

〈

A+
k
Ak

〉

= |xk|2
〈

F+
k

Fk

〉

+ |yk|2
〈

GkG
+
k

〉

〈

D+
k
Dk

〉

= |vk|2
〈

FkF
+
k

〉

+ |uk|2
〈

G+
k
Gk

〉

(48)

and the 〈...〉 averaging is performed over the equilibium state of a ferrimagnet and in com-

pliance with the commutation rules for the boson operators can be rewritten:

〈

A+
k
Ak

〉

= |xk|2 〈n̂Fk〉 + |yk|2 (1 − 〈n̂Gk〉)
〈

D+
k
Dk

〉

= |vk|2 (1 − 〈n̂Fk〉) + |uk|2 〈n̂Gk〉 (49)

The average population of a magnon state at a temperature T = θ/kB expresses through

the energy of the corresponding magnon

~ω±
k

= J‖ε
±
k

(50)
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following the boson statistics:

〈n̂Gk〉 =

[

exp

(

~ω−
k

θ

)

− 1

]−1

; 〈n̂Fk〉 =

[

exp

(

~ω+
k

θ

)

− 1

]−1

. (51)

In the low-temperature limit the contribution of the gap magnons is exponentially small

so that 〈n̂Fk〉 can be set equal to zero. The expansion amplitudes uk, vk, xk, and yk are

themselves immaterial and the only required densities are |xk|2 and |yk|2 given by:

|xk|2

|yk|2

}

=
1

Sd + Sa

{

Sd

Sa

(52)

(here we neglected the k-dependence of the magnon amplitudes).

The summation prescribed by eq. (47) replaces according to:

1

N

∑

k

→ 1

8π3

∫

BZ

d3k (53)

with the first Brillouin zone being a cube with the side of 2π.

Evaluating the integrals is based on the advantage of the long wave approximation for

the energy. Two versions of the latter are relevant: in the first low-temperature regime

θ ≪ |J⊥| < J‖ the gapless branch of the magnon energy spectrum has the form:

~ω−
k

=

(

SdSa

Sd − Sa

J‖k
2
a −

S2
d

Sd − Sa

J⊥k2
b +

SdSa

Sd − Sa

J‖k
2
c

)

(54)

which by the standard moves (see e.g. Ref [21]) brings us to the estimates

1

N

∑

k

〈n̂Gk〉
{

|xk|2

|yk|2

}

=
1

Sd + Sa

{

Sd

Sa

}

(Sd − Sa)
3

2

8π
3

2 S2
dSa

ζ

(

3

2

)

θ
3

2

J‖ |J⊥|
1

2

(55)

(here ζ is the Riemann ζ-function). This is in some variance with Ref. [17] since in the

present case the structure factors for the magnetic interactions corresponding to the realistic

model of the material under study have been used rather the simple cubic ones and the

definition of the exchange parameters in the Hamiltonian differs by a factor of two (each

pair of interacting spins counts once here so that the coefficient of the interaction parameter

in the diagonal matrix element of the equation of motion equals to the number of neighbours

of the correcponding type). Taking into account quadratic corrections to the densities eq.

(52) yields the higher order corrections ∝ θ
5

2 . Neglecting these corrections one gets the

Bloch T
3

2 law for the temperature dependence of the spontaneous magnetization:

Ms = M0

[

1 −
(

T

TN

) 3

2

]

(56)
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with the critical (Néel) temperature (one at which the spontaneous magnetization disappears

and which in the present model coincides with the point where the sublattice magnetizations

disappear either) to be found from the equiation:

1

Sd + Sa

(Sd − Sa)
3

2

8π
3

2 S2
dSa

ζ

(

3

2

)

θ
3

2

N

J‖ |J⊥|
1

2

= 1

which yields:

kBTN =
4π

ζ
2

3 (3
2
)

1

Sd − Sa

3

√

(Sd + Sa)
2 S4

dS
2
a

[

J2
‖ |J⊥|

] 1

3 − (57)

the 3D structure-specific relation of the effective exchange interaction to the Néel tempera-

ture.

Expanding the magnon energy upto the second order in all components of the wave

vector is possible only if the temperature is the smallest enery scale. In the case of very high

anisotropy the second low temperature regime is possible when |J⊥| ≪ θ ≪ J‖. In this case

the gapless branch of the magnon energy spectrum has the form:

~ω−
k

=

(

SdSa

Sd − Sa

J‖k
2
p − 2

S2
d

Sd − Sa

J⊥ (1 − coskb)

)

(58)

k2
p = k2

a + k2
c

and the integration of |xk|2 or |yk|2 divided by
[

exp
(

~ω−

k

θ

)

− 1
]

first performs (following

Ref. [19]) over the planar projection kp of the wave vector k, which reduces to

ab

4π2

∞
∫

0

kpdkp
[

exp
(

pk2
p

)

− a
] (59)

where

a = exp

[

2S2
d

Sd − Sa

J⊥

θ
(1 − cos kb)

]

; p =
SdSa

Sd − Sa

J‖

θ
; b =

1

Sd + Sa

{

Sd

Sa

}

. (60)

After substituting z = k2
p the integration yields:

− b

8π2p
log(1 − a) (61)

Provided a is an exponential function with a small negative argument, log(1 − a) replaces

by the logarithm of the absolute value of the argument:

log(1 − a) ≈ log

(

2S2
d

Sd − Sa

|J⊥|
θ

(1 − cos kb)

)

, (62)
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so that the expression to be intrgrated over kb becomes

− 1

8π2

Sd − Sa

SdSa

θ

J‖

1

Sd + Sa

{

Sd

Sa

}

log

(

2S2
d

Sd − Sa

|J⊥|
θ

(1 − cos kb)

)

(63)

which immediately yields

− 1

4π

Sd − Sa

SdSa

θ

J‖

1

Sd + Sa

{

Sd

Sa

}

log

(

S2
d

Sd − Sa

|J⊥|
θ

)

. (64)

The sublattice magnetizations are:

{

Sd

Sa

} (

1 − 1

4π

Sd − Sa

SdSa

1

Sd + Sa

θ

J‖

log

(

Sd − Sa

S2
d

θ

|J⊥|

))

Accordingly the Néel temperature is to be determind from the transcendental equation:

1

4π

Sd − Sa

SdSa

θN

J‖

1

Sd + Sa

log

(

Sd − Sa

S2
d

θN

|J⊥|

)

= 1, (65)

and the magnetization as well is given by:

Ms = M0

[

1 − 1

4π

Sd − Sa

SdSa

1

Sd + Sa

θ

J‖

log

(

Sd − Sa

S2
d

θ

|J⊥|

)]

(66)

provided θ is close enough to θN.

V. DATA ANALYSIS AND DISCUSSION

In this paper we presented a detailed analysis of the results of our numerical studies

Ref. [9] of the models of V-TCNE room temperature organometallic ”ferromagnet” and

expressed them in terms of the effective spin-Hamiltonian for a selection of interacting

atomic/molecular states. The proposed model is now applied to analysis of a wider collection

of experimental data available for this fascinating object and its Fe analog.

First of all we notice that the spin polarization per unit cell (number of electrons with

spin up minus that with spin down) which can be related with observed magnetization per

formula unit. We see that the calculation performed for V(TCNE)2 at the experimental

structure of Fe(TCNE)2 depicted on Fig. 1 shows the spin polarization of ca. 8 spins-1/2

per unit cell corresponding to two netto unpaired electrons per formula unit which is in

a fair agreement with the magnetization measured in the HM V(TCNE)2 compound. On

the other hand the original LM V(TCNE)2 material manifests a weaker saturation mag-

netization, namely corresponding to ca. one netto unpaired electron per formula unit.
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This allows to think about certain differences in the structures of two materials as depen-

dent on the way of their fabrication. Nevertheless, both experimentally observed values (ca.

10·103 emu·Oe·mol−1 and 6·103 emu·Oe·mol−1, respectively) both deviate from the theo-

retical values of 11.2 and 5.6 giving the magnetization produced by the integer number of

netto spin-polarized electrons in an assumption of the Landé factor being equal to 2. It is

remarkable that in a HM material the experimental magnetization seems to be smaller than

the theoretical value whereas in a LM material it is larger than the theoretical one.

The model for the critical temperature of the M(TCNE)2 materials as proposed in Ref.

[7] seems to require certain modification. According to Ref. [7] the critical temperature for

the magnetically ordered state of a material with two types of spins (Sd and Sa(= 1/2)) can

be taken in the mean field form:

3kBTMF
N =

∣

∣JMF
eff

∣

∣

√

ZadZda

√

Sd(Sd + 1)Sa(Sa + 1)

(The factor of two is dropped here to get the formula to conform with the Hamiltonian

definition accepted in the present paper). This formula appears as a zero interlayer coupling

limit of the mean field expression for the Néel temperature in a ferrimagnet eq. (26). In Ref.

[7] it had been applied to the Fe(TCNE)2 compound for which the structure measurements

have been performed there. It, however, brings up two complications – one theoretical and

another experimental. From the experimental point of view we notice that the formula eq.

(26) is effectively linear in Sd rather than quadratic. For that reason even the mean field

estimates of the exchange parameters as given in Table 1 must be reconsidered since the latter

had been obtained with use of the quadratic dependence. As one can see from the structure

the choice of Zad = Zda = 4 yields the estimate of the mean field exchange parameter

for the Fe(TCNE)2 compound of JMF
eff (Fe) = 43 K and for the V(TCNE)2 compound –

JMF
eff (V) = 183 K. Both values are significantly larger than those given in Table 1, but it is

remarkable that the difference between them (to be explained) reduces from the factor of

larger than five to that of 4.25. We notice that following the assumption of Ref. [23] and

using Zdd = 6 for the V(TCNE)2 compound further reduces the difference and the value of

the exchange parameter for the latter, but from our point of view it cannot be substantiated

within the scope of the model considered in the present paper.

From the theoretical point of view, even the improved molecular field expression eq. (26)

has that disadvantage that it predicts a nonvanishing ordering temperature for J⊥ = 0. It
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is obviously wrong and such an estimate is not acceptable in the context where a strong

anisotropy might be expected on the structure basis. As it has been mentioned the model

must be complemented by the interlayer interactions between the effective spins 3/2 on the

vanadium sites mediated by the diamagnetic (closed shell) [TCNE]2− units. Remarkably

enough the sign of this interaction must be ferromagnetic (the magnetic moments residing

in the layers must be pointing in the same direction) to ensure the existence of the net

spontaneous magnetization in the three-dimensional sample, although in general one has to

expect antiferromagnetic sign of such an interaction [11] (see below).

In a presumably rather anisotropic situation brought by tentative difference in mecha-

nisms of the intralayer and interlayer interactions (respectively ”antiferromagnetic kinetic

exchange” for the intralayer interaction and the ”ferromagnetic superexchange” for the in-

terlayer one) the critical temperature has to be estimated from the spin-wave treatment

taking an adequate care about the anisotropy of the effective spin-spin interaction and at

least providing a correct asymptotic value of the critical temperature for the vanishing in-

terlayer coupling J⊥. Neither three-dimensional (3D) or two-dimensional (2D) estimates

of the Néel temperature eqs. (57) and (65), respectively, permits to determine the longi-

tudinal and transversal interactions independently and to establish by this the amount of

anisotropy. The effective exchange interaction JSW
eff = 3

√

J2
‖J⊥ as derived from eq. (57) and

the experimental Néel temperature for the HM V(TCNE)2 compound amounts JSW
eff (V) =

36 K. This is due rather large numerical value of the transition coefficient in eq. (57) cou-

pling the effective exchange interaction with the Néel temperature (11.376 for the structure

depicted in Fig.1 and Sd = 3
2
). This result is in a general agreement with the result of Ref.

[17] which yields the corresponding coefficient to be 9.937 for a simple cubic ferrimagnet

with the same values of the effective spins. (It is not clear how the estimate of ca. 100

K for JSW
eff (V) is obtained in Ref. [22] since is also based on assumption of a simple cubic

lattice magnetic structure, but apparently uses some different coefficient). It also stresses

the different character of averaging of intralayer and interlayer exchange parameters in the

mean field (arithmetic mean) and in the spin-wave (geometric mean) approximations. At

the high anisotropies the geometric mean provides much stronger dependence of the effective

exchange on the interlayer exchange than the arithmetic mean.

Whatever value of JSW
eff leaves a wide range of possibilities since each pair of values

of J⊥ and J‖ yielding the above value of JSW
eff (V) conforms with the experimental data
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on magnetization. It has to be realized, however, that using the Bloch T
3

2 law for the

magnetization in the entire temperature range below TN is an extrapolation of the data

obtained at low temperatures. In order to check its validity in a wider temperature range we

notice that according to it the magnetization depletion at the an intermediate temperature

(225 K) amounts the factor of 0.592 which looks out to be in an acceptable agreement

with experiment which shows the magnetization depletion by a factor of ca. 0.6 at this

temperature as compared to that at T = 0.

In the V(TCNE)2 case the measured magnetization values are available up to 300 K.

The Bloch T
3

2 -law for the temperature dependence of spontaneous magnetization results in

a simple formula for the slope of the magnetization vs. temperature in the Néel point:

−3

2

M0

TN

(67)

As one can derive from the magnetization data on the HM compound given in Ref. [6] the

slope of the magnetization of the HM material in the Néel point amounts −1.4
M0

TN

which

is a fair extrapolation of the last measured points. It suggests the 3D regime for the HM

material in entire temperature interval up to the Néel point. Nevertheless the possibility of

transition to the 2D regime at T > 300 K cannot be a priori excluded. Then for the 2D

regime the slope of magnetization vs. temperature in the Néel point is:

−M0

kB

4πJ‖

Sd − Sa

SdSa

1

Sd + Sa

(

1 + log

(

Sd − Sa

S2
d

kBTN

|J⊥|

))

(68)

When combined with eq. (65) it yields:

−M0

(

kB

4πJ‖

Sd − Sa

SdSa

1

Sd + Sa

+
1

TN

)

(69)

Employing the value of the slope extracted from Fig. 1 of Ref. [6] we derive kBTN =

2.4πJ‖, and inserting experimental (extrapolated) value of TN yields immediately J‖ =

54 K and together with the value of JSW
eff extracted from low temperature data allows to

estimate anisotropy to be (J‖/J⊥ ≈ 3). At the above intermediate temperature (225 K) the

2D estimate with this anisotropy shows the depletion of magnetization to be 0.595 of the

maximal value at 0 K as well in a perfect agreement with experiment, which shows that the

available data on the temperature dependence of magnetization in V(TCNE)2 do not allow

to distinguish between the 3D and 2D regimes. It must be admitted that in general this value

of anisotropy is not large enough (∼ 3) for the 2D regime to install. This analysis, however,
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allows us to set bounds for the value J‖ in the V(TCNE)2 compound as derived from the spin-

wave treatment: it appears that this compound resides in the 3D regime so that the above

value of anisotropy must be considered as a maximal possible in this material. Otherwise

even higher Néel temperatures (although not accessible expreimentally due to material’s

decomposition) still conforming to the applicability conditions (2J⊥S2
d ≪ θ ≪ 4J‖SdSa)

Ref. [24] of the logarithmic formula eq. (65) should have to be admitted.

Applying analogous treatment to the Fe(TCNE)2 compound for which the structure pre-

sented in Fig. 1 is experimentally established yields the following: JSW
eff = 9.5 K (the coef-

ficient of 12.914 coming from eq. (57) with Sd = 2). With the anisotropy of 2.53 = 15.625

the 2D estimate of the Néel temperature is 124 K again in a fair agreement with the exper-

iment. The value of J‖ is then 24 K. This turns out to be not that much different from the

upper boundary for the same quantity for the V(TCNE)2 compound yielding the ratio of

the intralayer exchange parameters for the two materials of maximum only two, instead of 4

÷ 5 stipulated by the mean field estimates, and only 1.5 if the isotropic regime is accepted

for the V(TCNE)2 compound.

This latter value can be fairly explained by addressing the formulae of Section III B and

the spectroscopic data. From eq. (7) it follows that the ratio J‖(V)/J‖(Fe) of the intralayer

parameters for the vanadium and iron compounds is that of the squared hopping parameters

tda. (We assume here that due to similarity of the environment in these two compounds the

energy denominators in eq. (7) given by eq. (8) are the same for the both compounds since

the values of ionisation potentials of the V2+ and Fe2+ ions which are respectively 29.55 and

30.90 eV as coming from Ref. [25] and similarly close estimates for the electron affinities for

these ions). According to suggestion by [26] thoroughly tested numerically in Refs. [27–29]

the amounts of the crystal field splitting in the coordination compounds are proportional to

analogous expressions: squares of the hopping parameters divided by some (other) energy

denominators, which are however also approximately equal in similar compounds. Thus the

proportion holds:
J‖(V)

J‖(Fe)
=

10Dq(V)

10Dq(Fe)

for a pair of similar complexes. For the right side of the proportion we find from Refs. [30, 31]

10Dq(V)/10Dq(Fe) to be 1.35 for the hexacoordinate octahedral complexes with acetonitile,

which basically explains the above ratio 1.5 of the interlayer exchange parameters. Of course,
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the significant difference of anisotropies in these two materials remains to be understood.

This can be tentatively done with use of the Goodenough-Kanamori rules [11]. Indeed,

the difference in the interlayer interactions requiring an explanation is too large, so that

probably a qualitative distinction between the two materials is responsible for it. As we

mentioned above the simplistic application of the Goodenough-Kanamori rules in the present

situation yields an antiferromagnetic sign of the interlayer interaction (the situation falls into

the Goodenough-Kanamori cation-anion-cation category in the 180◦ geometry). Thus the

observed ferromagnetic sign of the interlayer interaction appears as a result of ferromagnetic

contributions of the higher order. Such contributions depend qualitatively on the possibility

to take advantage of the intrashell ferromagnetic interactions which in their turn depend

on the occupancies of the atomic orbitals in the d-shells of the interacting transition metal

cations. (Importance of such terms in the context of organometallic magnets had been

stressed in Refs. [13, 14]). It can be easily understood that the conditions for appearance

of the compensating ferromagnetic terms are very much different for the V2+ and Fe2+

ions. Indeed, in the first case two d-orbitals remain empty and can participate in the one-

electron transfer coupled with the intrashell exchange compensating otherwise dominating

antiferromagnetic kinetic exchange. In the second case only one doubly occupied d-orbital

can take part in a similar process, so that one can expect that the compensating contribution

will be significantly weaker in the case of the Fe(TCNE)2 compound eventually leading to

much weaker overall ferromagnetic interlayer interaction, than in the case of the V(TCNE)2

compound.

When trying to extend the model Ref. [7] of the Fe(TCNE)2 compound to analysis

of the V(TCNE)2 compound the authors Ref. [7] argued that the vanadium compound

must have some structure different from the iron one since the saturation magnetization

in it is lower and approximately corresponds to two spins 1/2 compensating (interacting

antiferromagnetically with) one spin 3/2 per formula unit. From this observation the authors

of Ref. [7] conclude that the interlayer interactions must be mediated by µ4-TCNE radical-

anions, as it has been suggested yet in [8], rather by the [TCNE]2−2 dimers. On the other

hand our numerical experiment shows that for the relaxed experimental structure of the

Fe(TCNE)2 compound the calculated magnetization fairly corresponds to the experimental

value obtained on the HM V(TCNE)2 material. Incidentally, the magnetization values

obtained numerically at intermediate structures on the ”reaction path” depicted on Fig. 4
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allows us to assume that some similar structures obtained from structures of Figs. 2, 3 by

rotations of some TCNE units may present in the LM V-TCNE material. This view had

found a recent support from the computational side in Ref. [32] where a structure for the

LM form of V(TCNE)2 has been proposed. It would be fair to say (although it is not said

in Ref. [32]) that this structure descends from the structures of Refs. [8, 9]. Specifically, in

order to obtain the structure of Ref. [32] one has to rotate the TCNE molecule laying in the

bc-face of either of these structures depicted in Figs. 2, 3 in each of the unit cells around

the diagonal of the face (or around an axis going through the pair of trans-nitrogen atoms

of that TCNE unit) by ca. 90◦ so that two other N-atoms of each rotating TCNE unit go

out of coordination with the V ions. Such a structure corresponds as that of Ref. [8] and

the principal one (see above) of Ref. [9] to two TCNE−̇ units per unit cell each bearing one

unpaired electron and thus expectedly yield the overall magnetization corresponding to one

unpaired electron per formula unit. For such a structure the magnetic interaction parameters

obtained in Ref. [32] are almost isotropic (J⊥ = 720 K and J‖ = 690 K) which is also not

surprising since the character of interactions between the V d-shells and LUMO’s of the

TCNE−̇ units are fairly the same in either direction. The numerical values of the exchange

parameters obtained in Ref. [32] are for sure considerable overestimates of the true ones

since the Néel temperature derived from them either by the mean field or spin-wave methods

exceeds the experimental value by orders of magnitude. Nevertheless, applying the spin-wave

theory similar to that described in Section IV B results in the estimate for kBTN = 9.14JSW
eff

which yields the numerical value of JSW
eff for the LM form of V(TCNE)2 material of 45

K in fair agreement with the similar above estimates for the intralayer effective exchange

parameters. It must also be admitted that the spin-wave threatment of the model proposed

of Ref. [32] leaves the question of the reason of complete disagreement of the temperature

dependence of the magnetization in the LM compound as given in Ref. [6] with the Bloch

law which should be expected for almost isotropic ferrimagnet unanswered.

VI. CONCLUSION

In the present paper we performed detailed analysis of our numerical results concerning

thinkable structure of room-temperature organometallic magnet V(TCNE)2 as manifested

in the corresponding projections of DoS. Similar analysis of projected DoS for a sequence
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of structures leading to the tentative experimental structure of V(TCNE)2 is performed

as well. Model spin Hamiltonian is developed for analysis and interpretation of numeri-

cal results and experimental data. Analysis of magnetic data in terms of the approximate

models derived from the phenomenological Hamiltonian is performed. A remarkable corre-

spondence between experimental (structural and magnetic) data on V(TCNE)x · y solvent

and numerical model has been observed previously: magnetization corresponding to two

unpaired electrons per formula unit in fair agreement with experiment on HM V-TCNE ma-

terial derived from V(CO)6 by CVD technique is obtained numerically for V(TCNE)2 taken

in the relaxed experimental Fe(TCNE)2 geometry Ref. [9]. Now it is complemented by the

detailed analysis of the magnon spectrum of this model. The possible transition between

the low-temperature 3D and the high-temperature 2D regimes is discussed. Estimates of

parameters of the proposed spin-Hamiltonian as treated in the spin-wave approximation are

derived from the experimental data on the Néel temperature and the temperature depen-

dence of magnetization. The differences in magnetic behavior of probably isostructural HM

V(TCNE)2 and Fe(TCNE)2 are tentatively explained.
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TABLE I: Saturation magnetization Ms at 2 K; ordering temperature Tc and effective exchange en-

ergy J
MF
eff between the metal residing effective spins in the assumption of the mean field connection

between Tc and J
MF
eff for M(TCNE)2 after [6].

Metal Saturation magnetization Ms Tc in K Jeff in K

emu Oe mol-1 Spins per M atom

Va 10 300 2 ∼ 400 53

Vb 6 100 1 ∼ 400 -

Mn 19 000 4 107 6.1

Fe 16 900 3 121 10

Co 8 000 ∼ 1.5 44 5.9

Ni 15 800 3 44 11

a The HM form obtained of V(CO)6 by CVD technique.

b The LM form obtained in solution.
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FIG. 1: Structure of Fe(TCNE)2 as coming from the EXAFS study [7]. Each unit cell contains

four formula units. The solvent molecules are omitted for clarity.
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FIG. 2: Hypothetical structure of V(TCNE)2 following [8].
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FIG. 3: Hypothetical structure of V(TCNE)2 following [9].
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FIG. 4: Schematic representation of the intermediate structures between the quadrupled ”princi-

pal” (left upper corner) and the experimental (right lower corner) ones.
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FIG. 5: Densities of states in two spin channels for the intermediate structures between the quadru-

pled ”principal” (left upper corner) and the experimental (right lower corner) ones as projected

to atoms: total densities of states – thin black lines, vanadium d-states – red/green; nitrogen –

blue/yellow; carbon – olive green/dark red.
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FIG. 6: V-Densities of states in two spin channels for the intermediate structures between the

quadrupled ”principal” (left upper corner) and the experimental (right lower corner) ones.
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FIG. 7: N-Densities of states in two spin channels for the intermediate structures between the

quadrupled ”principal” (left upper corner) and the experimental (right lower corner) ones. Thin

black lines show the total of the N-DoS in two spin channels; red/green is the DoS of the N atoms

in the V-TCNE layers, blue/yellow is that of the ”to be dangling” ones; olive green/dark red is

that of those involved in the V-V bonding through the [TCNE]2−2 units.
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FIG. 8: C-Densities of states in two spin channels for the intermediate structures between the

quadrupled ”principal” (left upper corner) and the experimental (right lower corner) ones. Thin

black lines show the total of the C-DoS in two spin channels; red/green is the DoS of the C atoms

in the V-TCNE layers, blue/yellow is that of those forming the C-C bonds in the [TCNE]2−2 units.
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FIG. 9: The projection of the DoS in two spin channels to the [TCNE]2−2 units. in the ”experimen-

tal” structure [7]. Red/green is the DoS of the N atoms bonding the V-TCNE layers; blue/yellow

is that of the ”to be dangling” ones; olive green/dark red is that of the C atoms.


