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Phenomenological model of spin crossover in molecular crystals

as derived from atom–atom potentials
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The method of atom–atom potentials, previously applied to the analysis of pure molecular

crystals formed by either low-spin (LS) or high-spin (HS) forms (spin isomers) of Fe(II)

coordination compounds (Sinitskiy et al., Phys. Chem. Chem. Phys., 2009, 11, 10983), is used to

estimate the lattice enthalpies of mixed crystals containing different fractions of the spin isomers.

The crystals under study were formed by LS and HS isomers of Fe(phen)2(NCS)2 (phen =

1,10-phenanthroline), Fe(btz)2(NCS)2 (btz = 5,50,6,60-tetrahydro-4H,40H-2,20-bi-1,3-thiazine), and

Fe(bpz)2(bipy) (bpz = dihydrobis(1-pyrazolil)borate, and bipy = 2,20-bipyridine). For the first

time the phenomenological parameters G pertinent to the Slichter–Drickamer model (SDM) of

several materials were independently derived from the microscopic model of the crystals with use

of atom–atom potentials of intermolecular interaction. The accuracy of the SDM was checked

against the numerical data on the enthalpies of mixed crystals. Fair semiquantitative agreement

with the experimental dependence of the HS fraction on temperature was achieved with use of

these values. Prediction of trends in G values as a function of chemical composition and geometry

of the crystals is possible with the proposed approach, which opens a way to rational design of

spin crossover materials with desired properties.

I. Introduction

Molecular crystals of coordination compounds of d-elements,

capable of spin crossover transitions (SCT), are at present

under active investigation.1–20 The average crystal field splitting

parameter 10Dq in these crystals is comparable with the

average pairing energy of the d-electrons which makes it

possible that the high-spin (HS) and low spin (LS) forms have

close energies and may coexist in a crystal. The external

thermodynamical parameters, such as temperature or pressure,

affect the equilibrium fractions of the spin forms. The process

when the fraction of molecules of different total spin changes

in response to changes of external conditions is precisely

the SCT.

The materials exhibiting SCT are rather well studied

experimentally, but the theoretical description of this pheno-

menon strongly lags behind. The simplest and most widespread

model of SCT in solids was proposed by Slichter andDrickamer21

(the Slichter–Drickamer model, SDM). This model treats

the solid undergoing a spin transition as a regular solution

(mixture) of molecules in the LS and HS states. The Gibbs

energy of the system is:

G(x,T) = G(0,T) + x(DH � TDS) + Gx(1 � x) � TSmix,

(1)

where x is the fraction of the HS molecules; DH and DS are the

variations of the enthalpy and the entropy in the course of the

SCT (they may be independently obtained from calorimetric

measurements, like in ref. 22, or phenomenologically fitted to

describe the experimental x(T) curve, like in ref. 23); G
is a phenomenological (effective) intermolecular interaction

parameter, showing whether the molecules in the mixed crystal

prefer to be surrounded by the molecules of the same (G 4 0)

or different (G o 0) spin; Smix is the entropy of mixing:

Smix = �R[xlnx + (1 � x)ln(1 � x)]. (2)

As usual, the equilibrium state at a given temperature T is

determined by the minimum of the Gibbs energy G(x,T). Note

that since the term G(0,T) in eqn (1) is independent of x, it

drops out from the formulas defining the equilibrium values

of x(T).

This model predicts, in agreement with the experiments, that

the SCT may be either smooth or abrupt or may exhibit

hysteresis, and this character is determined by the value of

G, characteristic for each material. More specifically, SCT with

G4 0 are classified as cooperative and the corresponding x(T)

curves have a steeper slope in the transition region than one
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without interaction (G= 0). Those with Go 0 are classified as

anticooperative and the corresponding x(T) curves have a

gentler slope in the transition region than those without

interaction. Among the cooperative transitions those with

G 4 Gc = 2kBTc (where Tc = DH/DS) refer to the first-order

phase transition and thus are abrupt and may exhibit hysteresis.

The key parameter determining qualitative features of SCT is

thus G. It is an effective parameter arising from some averaging

of energies of intermolecular interactions—in fact, over a

nonspecifically wide range of these interactions. It was

demonstrated in ref. 2 with a simple model intermolecular

potential that such an averaging is nontrivial and that G can be

of either sign depending on details of the lattice relaxation.

A significant theoretical disadvantage of this and other

existing models is that they contain phenomenological

parameters, like G in the SDM, that have not been calculated

independently. The existing microscopic models use over-

simplified description of the molecules (as spheres, ellipsoids,

etc.), which prevent construction of a complete theory,

especially due to importance of the short intermolecular

contacts (p–p interactions, S� � �H–C interactions, hydrogen

bonds, etc.1,3) tentatively responsible for the cooperativity

effects (see, however, section IV).

In this paper we try to use the explicit intermolecular

potentials to estimate the adequacy of the Slichter–Drickamer

model of SCT and to predict its phenomenological parameters.

The method used in our previous work1 employs explicit

potentials for intermolecular interactions—namely, the atom–

atom potentials. The underlying fact is that the crystals

exhibiting SCT studied in the present work are formed by

neutral molecules of coordination compounds with bulky

organic ligands. Intermolecular contacts in such crystals are

those between the organogenic atoms like C, H, N, S, etc. In

this context, the atom–atom potentials, being the standard

method developed for organic molecular crystals, can be

successfully applied and yield good results in modeling the

pure crystals formed by the individual LS and HS isomers.

The method of atom–atom potentials24 assumes that the

energy of the molecular crystal per molecule (calculated

relative to the energy of an isolated molecule) can be

represented as:

u ¼ 1

2Z

X

aa0mm0r

Eaa0 ðRðaa0mm0r0ÞÞ; ð3Þ

where each term is the energy of the interaction between the a-th
atom of the m-th molecule in the unit cell number r = (ra, rb, rc)

and the a0-th atom of the m0-th molecule in the unit cell 0

depending on the interatomic distance R; Z is the number of

molecules per unit cell. The most widespread approximations

for the atom–atom interaction are the Buckingham potential:

Eaa0 ðRÞ ¼ �
Aaa0

R6
þ Baa0e

�Caa0R; ð4Þ

and the Lennard-Jones potential:

Eaa0 ðRÞ ¼ �
Aaa0

R6
þ Baa0

R12
: ð5Þ

where Aaa0, Baa0, Caa0 are some method specific constants

characterizing interactions of atoms a,a0 as dependent on the

chemical nature of the latter.

Through the dependence of R(aa0mm0r0) on its arguments,

the energy is a fast computable function of the lattice para-

meters a, b, c, a, b and g, of relative positions and orientations

of the molecules in the unit cell, provided the structure of each

molecule is fixed. Having found the minimum of this function,

one gets estimates of the intermolecular interaction energy

(sublimation energy of the crystal), the equilibrium unit cell

parameters, and the positions and orientation of the molecules

in the unit cell.

Based on these theoretical concepts, we endeavor to

construct phenomenological models of SCT in the molecular

crystals. The rest of the article is designed as follows. In section II,

we describe the input data used for modelling: the crystal

structure of the compounds under study; the parameterization

of the atom–atom potentials; the software used for the energy

calculations; the experimental data on magnetic susceptibility

providing information on the thermal dependence of the

fractions of the spin isomers in the crystals. Section III

includes description and discussion of our results concerning

the parameters of SDM. Section IV provides the conclusion

and discussion of relation with other microscopical models.

Finally, the Appendix contains the comparative analysis

of the enthalpies predicted by different versions of atom–atom

potentials.

II. Data collection

The materials under study are formed by the spin isomers of

Fe(phen)2(NCS)2, Fe(btz)2(NCS)2, or Fe(bpz)2(bipy) molecules

(for structures of the ligands see Fig. 1). All three materials

consist of neutral molecules, and are held together by the

van der Waals forces.

The MOLCRYST program suite25 capable of calculation

and minimization of molecular crystals energy and enthalpy

was employed. Three atom–atom potentials were used:

(1) the Buckingham potential with the set of parameters

from ref. 26 (further referred to as 6-exp);

(2) the Lennard-Jones potential with the parameters taken

from ref. 27 (further referred to as 6–12);

(3) the Buckingham potential with the parameters set

derived in ref. 28; based on the set of parameters from

Fig. 1 Structure formulas for the ligands of the spin-active complexes

studied.
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ref. 26, but adjusted in ref. 1 to achieve a better reproduction

of the equilibrium lattice parameters of the pure LS and HS

crystals of the Fe(phen)2(NCS)2 and Fe(btz)2(NCS)2
compounds and their variation throughout the SCT

(further referred to as 6-expM).

The molecular structures of the LS and HS forms of the

above three compounds were taken from X-ray

experiments23,29,30 and were assumed to be fixed (frozen).

The space groups of the crystals are Pbcn, Pbcn and C2/c

respectively; the number of molecules in a unit cell, Z = 4, in

all three cases. Further details of the crystal structures and the

intermolecular contacts can be found in ref. 1. The validity of

this ‘‘rigid-body’’ approximation can be tested and the analysis

of the difference of the vibrational parameters for a crystal

formed by different spin isomers demonstrated31,32 that the

non-rigidity is relatively small for both HS and LS forms. In

other words, one can imagine a mixed crystal as one formed by

the molecules with two different structures (LS and HS), but

not with intermediate ones. The geometrical change of an

individual molecule (the spin transition itself) takes place

instantaneously on the thermodynamical time scale.

To study how the concentrations of the spin isomers and

their distribution in the crystal affect the energy (enthalpy) of a

mixed crystal, we performed minimization of the enthalpies of

various mixed crystals as a function of the unit cell parameters,

positions of the centers of masses (CM), and the rotation

angles of the molecules in the unit cell. In each case the

concentrations of the HS molecules and their distribution in

the crystal were kept constant. The mixed crystals to be

included in the consideration were built as follows. In the

crystals formed by repetition of the original unit cells, containing

four molecules each, total number of possible distributions of

the spin forms equals to 24 = 16. Due to the symmetry only

seven of them are different: one for x= 0; one (out of four) for

x = 0.25; three (out of six) for x = 0.5; one (out of four) for

x = 0.75; and one for x = 1. Seven data points do not suffice

to reliably fit a model with three free parameters (C, D and G),
in particular if we take into consideration that such a dataset

includes only highly correlated patterns of spin distribution

(due to symmetry) and are hardly extendable to nontrivial spin

distributions. The simplest generalization is to include in the

consideration the mixed crystals formed by repetition of

doubled unit cells. In this case the total number of distributions

of the spin forms in the crystal reaches 28�3 = 768 (the factor

of 3 appears since the duplication of a unit cell is possible

along either of a, b, or c directions). Only some part of these

768 distributions represent different crystal structures (respectively,

92 mutually different structures in the cases of Fe(phen)2-

(NCS)2 and Fe(btz)2(NCS)2 and 96 in the case of Fe(bpz)2(bipy)).

This amount of data fairly suffices for a least-squares treatment.

The crystal enthalpy was minimized as a function of 51

parameters (a, b, c, three unit cell angles, three rotation angles

for each of eight molecules in the doubled unit cell, three CM

position coordinates for seven out of eight molecules in the

unit cell). Pressure was set to be 1 atm. Arithmetic mean values

of the parameters of the pure LS and HS crystal were taken as

initial approximations. The minimization was performed in

three stages. First, we minimized the energy calculated

according to eqn (3) with only one layer of unit cells adjacent

to that with the lattice vector 0. By this fast estimates of the

approximate location of the minima are made. After that, we

corrected the location of the minima, taking into consideration

one more layer of adjacent unit cells. Finally, we computed the

energy (without performing a new minimization) for the

crystal parameters found at the previous stage, accounting

for in total four layers of unit cells adjacent to the given one

(those r = (ra, rb, rc), for which |ra|, |rb|, |rc| r 4 were

included). This algorithm of the enthalpy minimization is

based on the results of ref. 1 where it was shown that even

one layer of adjacent unit cells yields the optimal lattice

parameters within 0.1% of the optimal parameters obtained

with a larger number of adjacent layers. At the same time, the

energy (or the enthalpy) becomes stable (the difference is less

than 0.01 kcal mol�1) only when at least three layers of

adjacent unit cells are included. This procedure was applied

to each mixed crystal and for each of the three potentials. As a

result, we obtained the enthalpies of each mixed crystal as

functions of the concentration x of the HS molecules and their

distribution in the crystal.

The experimental data concerning the x(T) curves and the

‘‘experimental’’ values of the G parameter, as extracted from

these curves, call for a separate discussion. Since the HS forms

of the studied Fe(II) complexes have 4 unpaired electrons,

while in the LS molecules all electrons are paired, a change of

the x value manifests itself in a change of the magnetic

susceptibility w of the crystal. According to the Curie law,

the product of the molar magnetic susceptibility wM and the

absolute temperature T should be constant for a given para-

magnetic material. A number of authors, however, simplify

the situation by concluding that the x(T) values can be

calculated by dividing the wMT value at a given temperature

by the wMT value at the highest temperature for which they

made measurements (for example, see ref. 23, 29, 30 and 33).

This approach is not adequate due to the following reasons.

� The LS form has a non-zero magnetic susceptibility,

despite the fact that all electrons are paired.34 The estimated

molar susceptibility wLS = 2.07 � 10�4 cm3 mol�1.34

� For the HS form the effective magnetic moment neff, and

therefore the value of wMT, deviates from the Curie law due

to spin–orbit coupling.34 Namely, in CGS units, wMT =

0.125 cm3 K mol�1�n2eff, and

n2eff

¼ ð73:5� 40:5yÞe�3=y þ ð67:5þ 12:5yÞe�1=y þ ð84þ 28yÞe2=y
3e�3=y þ 5e�1=y þ 7e2=y

;

ð6Þ

where y = �4 kT/z, with the spin–orbit constant for Fe(II)

z = 410 cm�1.

� The high-temperature limit of the wMT value was not

accurately studied. All experimental measurements were performed

below 293 K. At least in the case of the Fe(btz)2(NCS)2
compound, it is evident (see Fig. 1 in ref. 30) that the wMT

value at this temperature is still far from its high-temperature

limit. In addition, the limiting value of x at high temperatures

is not mandatorily equal to unity (for example, in the SDM,

limx(T-N) = (1 + exp(�DS/R))�1 o 1). As a result, it is

not clear how many LS molecules are left in the crystals in
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each of these three cases at 290 K, and how to calculate their

amount at intermediate temperatures.

� There are evidences that the thermodynamical equilibrium

is probably not reached in the systems (at least, in the

Fe(phen)2(NCS)2 and Fe(btz)2(NCS)2 crystals) while the

measurements of magnetic susceptibility are performed, especially

at low temperatures. This is pointed out by discrepancies of

the experimental wMT vs. T curves for the samples prepared by

different techniques, or measured in different groups.29,30,35

Mössbauer spectroscopy confirms the conclusion about

incompleteness of the spin transition in some samples at low

temperatures.35

Taking these issues into consideration, we estimated the

‘‘experimental’’ G parameters of the SDM of the materials at

hand as follows. Assuming the magnetic susceptibility of a

mixture of LS and HS forms to linearly depend on their

concentrations in the sample, we have:

(wMT)
SDM=(1�x(T))wLST+x(T)�0.125 cm3 K mol�1�n2eff(T,z).

(7)

The DH, DS and G parameters of the SDM can be found from

the experimental data on wMT vs. T by the (nonlinear) least

squares method, minimizing numerically the sum

X

T

ððwMTÞSDM � ðwMTÞexpÞ2; ð8Þ

taken in all points of temperature for which the experimental

data are available,23,29,30 with respect to DH, DS, and G. Here

(wMT)exp are the experimental values for given T, and

(wMT)SDM are calculated by eqn (7) from the x(T) values

predicted by the SDM with the given DH, DS, and G. The
results are given in Table 1. Taking into consideration that the

experimental data at low temperatures probably refer to non-

equilibrium states, we complemented the results of minimization

of the sum of squares in the entire available temperature

intervals by the results of minimization for the experimental data

in the ranges of 168–210 K (Fe(phen)2(NCS)2), 170–290 K

(Fe(btz)2(NCS)2), and 129–229 K (Fe(bpz)2(bipy)). Since the

values of wMT change rapidly with T in these intervals, the

system is more likely to be able to come to the equilibrium.

The values of the DH, DS, and G parameters, calculated by

these two approaches (those obtained from the restricted

temperature intervals are given in brackets), are rather close

to each other (except for the DH value for the Fe(btz)2(NCS)2
crystal). The deviations of the predicted wMT from the experimental

ones are rather small at the intermediate and high temperatures

(0.07–0.10 cm3 K mol�1 for all three compounds, in comparison

to the magnitude of variation of wMT itself B3 cm3 Kmol�1), but

significantly increase at low temperatures (B0.5 cm3 K mol�1

for the Fe(phen)2(NCS)2 and Fe(btz)2(NCS)2 crystals, which

corresponds to the leftover concentration of the HS molecules

as high as 15–18%).

The results reported for ‘‘sample A’’ of the

Fe(phen)2(NCS)2 compound in ref. 35 suggest that the

equilibrium was reached for that sample at low temperatures,

and no HS molecules in the sample were found at 4.2 K by

Mössbauer spectroscopy (in contrast to ‘‘sample B’’ in the

same publication). However, the SCT in ‘‘sample A’’ was so

abrupt that our attempts to estimate DH and G values from the

x(T) plot (Fig. 4 in ref. 35) did not lead to stable results. For

this reason, we will be using the above values of DH and G,
derived from the experimental data from ref. 29, but will use

the data from ref. 35 in evaluation of the results (see Fig. 2).

The values of the G parameter given in Table 1 are below

referred to as the ‘‘experimental’’ ones to be compared with

the results of modeling by the atom–atom potential method.

III. Results and discussion

Using the sets of enthalpies calculated for different mixed

crystals of the given compound by the method described in the

previous section, one can apply the least squares procedure to

estimate the phenomenological parameters of a macroscopic

model. If for a given x all configurations of the HS molecules

in a crystal are taken as equiprobable, the parameter G of

the Slichter–Drickamer model can be estimated from the

regression

H = C + Dx + Gx(1 � x), (9)

where H is the enthalpy of the mixed crystal relative to the

enthalpy of the pure LS crystal, which thus yields microscopic

‘‘mean-field’’ estimates of the parameters of the SDM as

derived from the atom–atom potentials.

On the other hand, the configurations of the HS molecules

with a relatively high energy (as compared to other configurations

for a given x) will occur less frequently in the Gibbs ensemble.

To get a simplest account for this effect, we estimated the

parameters in the following approximation:

minH(x) = C0 + D0x + G0x(1 � x), (10)

where minH(x) is the minimum enthalpy among the enthalpies of

all configurations with the given x value. This will be termed as

microscopic ‘‘overcorrelated’’ estimates of the parameters of

the SDM as derived from the atom–atom potentials.

It is important to verify that the results of such treatment

are independent of the specific atom–atom potential used

for modeling the mixed crystals, especially in view of that

experimental data on the energies or enthalpies of the mixed

crystals formed by both LS and HS isomers are currently

absent. This analysis shows that the enthalpy estimates coming

from different potentials are consistent with each other,

Table 1 Empirical values of the parameters of the Slicher-Drickamer model obtained by the nonlinear least squares method. The values in
parenthesis refer to the restricted temperature intervals (see details in the text).

Compound DH, kcal mol�1 Texp
c = DH/DS, K Gexp, kcal mol�1

Fe(phen)2(NCS)2 0.8 (0.9) 177.8 (177.8) 0.710 (0.715)
Fe(btz)2(NCS)2 1.1 (1.9) 231.7 (233.7) 0.47 (0.30)
Fe(bpz)2(bipy) 1.1 (1.2) 163.2 (163.3) 0.55 (0.54)
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differing typically by 0.2–0.6 kcal mol�1. The major fraction of

the difference can be attributed to a systematic error, presumably

arising from the uncertainty in the energy scale (see more

detailed discussion in the Appendix).

As mentioned in previous section, the mixed crystals with

four or eight molecules per unit cell were included in the

sample; respectively, the fraction of HS molecules in a

crystal x for different data points was equal to: 0, 1/8 = 12.5%,

2/8 = 25%,. . ., 7/8 = 87.5%, 8/8 = 100%. When estimating

the optimal values of C, D and G in the ‘‘mean-field’’

approximation (9), we used the weighted least squares method

to account for the fact that different number of structures in

the sample represent different number of the values of x

(for example, x = 0 is respresented by one structure,

x = 0.125—by three structures: one with a unit cell with

Z= 8 obtained by doubling of an original unit cell with Z=4

Fig. 2 Comparison of the wMT vs. T curves measured experimentally (‘‘exp’’)23,29,30 and those calculated in this work (‘‘calc’’). For the

Fe(phen)2(NCS)2 compound, the experimental cooling mode is shown; the hysteresis loop does not exceed 1 K. For the two other substances, no

hysteresis was experimentally detected. Calculations were made with the Slichter–Drickamer model, using the G values taken from Table 2

(G0, 6-expM parameterization), and the DH and Tc values from Table 1. For the Fe(phen)2(NCS)2 compound, the experimental data for ‘‘sample A’’ from

ref. 35 are also shown (‘‘expMössb’’); the values of x translated into values of wMT by eqn (7).

Table 2 The parameters of the simplified approximations eqn (9) and (10) for the Fe(phen)2(NCS)2, Fe(btz)2(NCS)2 and Fe(bpz)2(bipy)
compounds found by the method of least squares. For each model the value of R2 and the mean-square error of the approximation (s) are
reported. Standard errors are given in parenthesis after the estimations of the corresponding parameters (errors are measured in the units of the last
digit of the parameter). All values (except for R2) are in kcal mol�1.

Compound
Fe(phen)2(NCS)2 Fe(btz)2(NCS)2 Fe(bpz)2(bipy)

Potential 6-expM 6-exp 6–12 6-expM 6-exp 6–12 6-exp 6–12

The ‘‘mean-field’’ SDM eqn (9):
C 0.017 (16) 0.016 (15) 0.016 (15) 0.005 (8) 0.010 (9) 0.015 (9) 0.021 (10) 0.040 (14)
D 1.50 (2) 1.20 (2) 1.78 (2) �1.07 (1) �1.11 (1) �0.19 (1) 0.43 (1) 1.12 (2)
G 2.06 (7) 1.94 (7) 1.93 (7) 1.06 (4) 1.44 (4) 1.69 (4) 1.38 (4) 2.02 (6)
R2 0.987 0.981 0.991 0.992 0.992 0.957 0.952 0.978
s 0.061 0.059 0.058 0.032 0.035 0.036 0.043 0.062
The ‘‘overcorrelated’’ SDM eqn (10):
C0 0.035 (40) 0.029 (35) 0.028 (31) 0.019 (27) 0.029 (35) 0.035 (37) 0.040 (38) 0.067 (58)
D0 1.52 (5) 1.21 (4) 1.79 (4) �1.07 (3) �1.11 (4) �0.19 (5) 0.45 (5) 1.15 (7)
G0 1.19 (18) 1.21 (16) 1.29 (14) 0.56 (12) 0.83 (16) 1.09 (16) 0.59 (17) 0.88 (26)
R2 0.994 0.993 0.997 0.994 0.991 0.910 0.941 0.977
s 0.050 0.043 0.038 0.033 0.043 0.045 0.047 0.071
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along the x axis; another with a unit cell with Z = 8 obtained

by doubling along the y axis; and the third—by doubling along

the z axis). The system of weights was developed in such a way

that all the values of x in the range from 0 to 1 are uniformly

represented. The maximal weight (1) was assigned to the pure

LS and pure HS configurations; the minimum weight (0.019)

was attributed to several structures with x = 0.5. As for the

case of the ‘‘overcorrelated’’ approximation (10), the system of

weights is not needed there, since by definition of minH(x)

every value of x in the range from 0 to 1 is represented by only

one mixed crystal and therefore by only one data point.

The resulting effective parameters and the statistical charac-

teristics of the two models are given in Table 2. All regressions

have the standard errors as low as 0.03–0.07 kcal mol�1, which

does not exceed the presumable error of the atom–atom

scheme and is much less than the value of kBT at the

temperatures characteristic for the SCT. As one could expect,

the values of G0 for the regression eqn (10) are always smaller

than the corresponding values of G for the regression eqn (9),

since the energy in the correlated approximation is always

lower than the mean-field ones for all intermediate values of x,

but is the same for the pure LS and HS crystals. The deviation

of minH(x) from the linear function is smaller than that of

H(x), and thus the effective value of G0 is smaller than that of

G as well.

The true value of G will lie between the two extreme

estimates, since at any finite temperature all possible config-

urations of the HS molecules in the crystal occur in the Gibbs

ensemble. The exact value of the parameter may be obtained

by explicit Monte-Carlo simulations of the ensemble or more

accurately approximated, e.g., by the quasichemical method.36

The standard error analysis shows that the simplest ‘‘mean-field’’

eqn (9) and ‘‘overcorrelated’’ eqn (10) approximations, are

quite acceptable, in spite of their simplicity. The comparison

of the calculated G values with the experimental values (see

Table 1) shows the following. The signs and the orders of

magnitudes of the G parameters were predicted correctly in all

three cases, as well as the relations between these parameters

for the different materials: G(Fe(phen)2(NCS)2)4 G(Fe(bpz)2-
(bipy))4 G(Fe(btz)2(NCS)2); G0(Fe(phen)2(NCS)2)4 G0(Fe(bpz)2-
(bipy)) 4 G0(Fe(btz)2(NCS)2) as in the ‘‘mean-field’’ likely in

the ‘‘overcorrelated’’ approximations. The estimated parameters

are all positive and thus correspond to ‘‘cooperative’’ behavior.

The absolute ‘‘mean-field’’ values are overestimated by a

factor of two. Partially, this may be caused by the fact that

we considered only the mixed crystals with unit cells involving

four or eight molecules, and thus could underestimate possible

relaxations (especially elastic) in the crystal and therefore

overestimate the effective values of the G parameters. Another

possible source of the error, which in our opinion is the major

source (see, however, below), is the uncertainty in the absolute

scale of the energy as calculated by the atom–atom potentials

method, as it is discussed in the Appendix. To verify this

suggestion, independent (preferably experimental) studies of

the intermolecular interaction energies are required.

The ‘‘overcorrelated’’ SDM parameters G0 showmuch better

agreement with experiment. The ‘‘mean-field’’ parameters G in

all three cases satisfy the condition G 4 Gc thus suggesting the

first-order SCT which must be abrupt and eventually manifest

a thermal hysteresis. Using the ‘‘overcorrelated’’ parameters

G0 significantly improves qualitative agreement with experiment

in this respect particularly if the modified parameterization

6-expM is applied. The SDM with thus defined parameters

predicts Fe(phen)2(NCS)2 to manifest an abrupt SCT with

hysteresis (G0 4 Gc) in agreement with experiment (though the

experimental width of the hysteresis loop does not exceed 1 K);

for Fe(btz)2(NCS)2 a gradual ‘‘cooperative’’ SCT without

hysteresis must be expected (G0 o Gc), also in agreement with

experiment; finally, for Fe(bpz)2(bipy) a sharper SCT without

hysteresis may be expected, which corresponds to the experi-

ment (G0 is slightly less than Gc with the 6-exp potential,

though the opposite relation is obtained with the 6–12 potential).

This comparison is illustrated in Fig. 2. As one can see, a semi-

quantitative agreement was reached. It is especially impressive

that the curve predicted for the Fe(phen)2(NCS)2 compound

(‘‘calc’’) with the use of DH value found from experimental

data for one sample (‘‘exp’’), where equilibrium was presumably

not reached at low temperatures, is in excellent agreement with

the experimental data for another sample (‘‘expMössb’’)

measured, presumably, in equilibrium.

IV. Conclusion

In the present paper we applied for the first time the method of

atom–atom potentials to mixed crystals formed by high-spin

and low-spin forms of the Fe(II) complexes capable of under-

going SCT, in order to check the adequacy of the interaction

energy treatment with use of the Slichter–Drickamer model,

and to obtain independent theoretical estimates of the corres-

ponding phenomenological parameters.

The approximation of a mixed crystal enthalpy by the

second order polynom in the concentration x of the HS

molecules in the crystal (Table 2), neglecting the details of

the spatial distribution of HSmolecules, already provides a good

level of precision (standard errors of 0.03–0.07 kcal mol�1)

in comparison to the kBT value (typically in the range of

0.3–0.6 kcal mol�1) and to the typical discrepancies of the

enthalpies of the same crystal estimated with the different

atom–atom potentials (standard errors up to 0.6 kcal mol�1).

This approximation is central to the Slichter–Drickamer

model, though it has not been verified up to now.

The values of the G parameters of the Slichter–Drickamer

model as estimated in the ‘‘mean-field’’ approximation were

found to be 1.9–2.1, 1.0–1.7, and 1.4–2.0 kcal mol�1 for

the Fe(phen)2(NCS)2, Fe(btz)2(NCS)2 and Fe(bpz)2(bipy)

compounds respectively, depending on the parameterization

used (the ‘‘experimental’’ values being 0.71, 0.3–0.5 and

0.55 kcal mol�1). It is remarkable that the discrepancies

between the different atom–atom potentials used for the same

substance were mainly absorbed by the D parameters of the

model, while the G parameters are less sensitive to them.

Nevertheless, the ‘‘mean-field’’ estimates of the SDM parameter

G turn out to be several times larger than the ‘‘experimental’’

estimates. By contrast, we could demonstrate that correlations

in the distribution of the spin-isomers in the crystal are crucial

for a correct description of the SCT. Within the ‘‘overcorrelated’’

model a semiquantitative agreement of the calculated values

G0 with the ‘‘experimental’’ ones is shown to be possible.
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Although even the simple ‘‘mean-field’’ model leads to correct

predictions of the sign of the G SDM-parameters and their

ratios for different compounds, semiquantitavely correct

performance of the ‘‘overcorrelated’’ model suggests that the

local correlations in the distribution of spin-isomers play the

leading role in building the correct picture of the phenomenon

under study. Taking the correlations into account even in a

simplistic way, we could reproduce qualitatively different

behavior the three materials under consideration exhibit under

the SCT. Specifically, the crystals of Fe(phen)2(NCS)2
manifest an abrupt SCT with hysteresis, the Fe(btz)2(NCS)2
compound shows a gradual SCT without hysteresis, and,

finally, in the case of Fe(bpz)2(bipy) a sharper SCT without

hysteresis is observed. Using the ‘‘overcorrelated’’ estimate for

the G0 SDM-parameters, we for the first time could successfully

predict the type of the SCT in these various crystals, based on

the microscopic considerations. This result is important not

only for theoretical study of this phenomenon, but also for

practical applications, opening a way for rational design of a

wide spectrum of industrially applicable SCT materials with

specific desired properties.

The above agreement with experiment obtained with use of

the atom–atom model of the van der Waals interactions

between the molecules in different spin states in the crystals

supports an old hypothesis4 of one of us concerning the origin

of the cooperative interactions responsible for appearance of

the phenomenological parameter G. Basically it is the difference

between the interaction energies of the spin isomers

G = 1
2
ze; e = EHL � 1

2
(EHH + ELL)

whatever their origin is (z is the number of nearest neighbors).

It suggests that at least in the case of neutral molecules

considered here the only reason for existence of the required

energy differences is the difference of ‘‘sizes’’ of the HS and LS

spin isomers accompanied by the lattice relaxations as

proposed yet in ref. 2. In a way it means that any specific

intramolecular mechanism is superfluous for explaining the

cooperative behavior in the SCT since that latter is of purely

intermolecular origin.

It is instructive to compare these arguments with the

approach taken in ref. 37. In that work the Coulomb inter-

actions between the charge distributions in a spin-active model

molecule with counteranion charges provided specific intra-

molecular mechanism responsible for the hysteresis in the

SCT. We incline to the idea that the hysteresis in SCT appears

(whenever it happens) as a consequence of cooperativity,

leading to the first order phase transition in the system

irrespective to the origin of the interactions yielding cooperativity.

Thus we consider possible contribution of the ref. 37 mechanism

to cooperativity. Their approach is based on a high-quality

ab initio calculation performed, however, for an oversimplified

model system formed by charged particles [Fe(NCH)6]
2+ as

assembled in a lattice together with Cl� counterions. The

authors of ref. 37 ascribe the hysteresis to an enormous charge

transfer (of ca. 0.5ē) allegedly occurring throughout the SCT.

We have to admit, that in an ionic system as that studied in

ref. 37 one cannot a priori exclude an electrostatic contribution

to the intermolecular interactions proportional to the charge

transfer in case it occurs. Indeed, the charge transfer affects

significantly the hexadecupole (16-pole) momentum of the

model [Fe(NCH)6]
2+ ion (all lower momenta are vanishing

due to symmetry in either spin form) and thus their inter-

actions with the counterions, which decay as R�5, as well as

those between the HS and LS forms of the model ion, which

decay, however, as R�9—faster than the van der Waals

forces—and thus should not significantly contribute to the

intermolecular interactions. Applying reasoning described in

details in ref. 38 we estimate the electrostatic contribution to

the above e parameter to be of the order of magnitude

e � ðDhÞ
2

R9

where Dh is the variation of the hexadecupole momentum of a

[Fe(NCH)6]
2+ ion under spin transition and R is the distance

between the centers of hexadecupoles—in our case between the

Fe atoms. The transfer of 0.5ē on dr E 2 Å results in the

variation of the hexadecupole momentum Bdr4 E 128 a.u.

Combining this with the interatomic separation of ca. 20 a.u.

we find the electrostatic contribution to e to be of the order of

0.01 K. That allows us to conclude that the amount of the

electrostatic contribution as estimated in ref. 37 (ca. 720 K—a

huge overestimate as compared to experimental values and our

results) is largely coming from the hexadecupole-counterion

interactions. Even if the charge transfers required for the

electrostatic mechanism had taken place (see below) their

effect in the crystals formed by electroneutral molecules—as

those studied in the present paper—must be even smaller since

in this case the first nonvanishing contribution to the energy

would be the hexadecupole-dipole one as decaying as R�6,

rather than R�5, and thus giving smaller contribution. We

dare to suppose, however, that the changes of the Fe atomic

charges upon the SCT are overestimated in ref. 37. This view is

supported by the problems with describing the excitation

spectrum of the [Fe(NCH)6]
2+ ion reported in the same paper.

By contrast, our earlier estimates,38 which are in perfect

agreement with the spectra, demonstrate that the charge

transfer under an SCT does not exceed 0.02ē and that the

contribution of electrostatic forces into the G parameter for

realistic low-symmetry molecular models does not exceed

B1% of its measured magnitude. On the other hand, if the

charge transfer does not take place during the SCT, the

standard atom–atom potentials used in the present study

effectively take into account all the charges occurring in the

organic ligands, which ultimately contribute to the energy of

molecular crystals as effective higher multipoles.

Appendix. Comparative analysis of the enthalpies

calculated with the use of various versions of the

atom–atom potentials

In the case of the Fe(phen)2(NCS)2 mixed crystals, the

enthalpies estimated with use of the atom–atom potentials

6-expM, 6-exp and 6–12, are fairly close to each other.

The corresponding correlation coefficients and mean-square

deviations are given in Table 3. These deviations can serve as

estimates of the uncertainties introduced into the model of
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SCT by the choice of a specific atom–atom parameterization

(as opposed to, for example, the uncertainties arising from the

assumptions of the Slichter–Drickamer model, or from the

lack of equilibration of samples in experiments). The similarity

of two spin forms allows one to calculate the relative energy of

the mixed crystals (that is, the energy of a mixed crystal

relative to the energy of the pure LS or HS crystal), regardless

of the parametrization system used, with the precision of

ca. 0.2 kcal mol�1, which is much smaller than the error in the

calculated absolute values of energies (the energies counted off

the level of infinitely separated molecules) of the same crystals

(typically ca. 1 kcal mol�1, see ref. 1). The main reason of the

remaining discrepancy is a systematic error. The mean-square

value of the difference H6-exp � kH6-expM is minimized with

k = 0.848 and equals to only 0.026 kcal mol�1 (7.3 times less

than the mean-square value of H6-exp � H6-expM), and the

minimum mean-square value of H6–12 � kH6-expM is achieved

for k = 1.096 and equals to 0.051 kcal mol�1 (2.5 times less

than the mean-square value of H6–12 � H6-expM). These

estimates are justified from the physical viewpoint by lack of

experimental data on crystal energies (in contrast with data on

the geometry of equilibrium lattice structures). Indeed, a

proportional increase of all A and B parameters (or, which

is the same, of all potential well depths) in eqn (4) or (5) would

only change the scale of energy, but not the position of minima

on potential energy surfaces. Hence, the experimental X-ray

structures alone do not suffice for determination of entire set

of parameters, and they must be supplemented with the data

with the dimension of energy (for example, sublimation heats).

Typically, the data of the first type are much more numerous

than those of the second type (for example, in ref. 26 122

sublimation energies were used in comparison to thousands of

data items-unit cell parameters a, b, c, a, b, g, CM positions

and rotation angles of the molecules-extracted from the X-ray

structures of 217 crystals). As a result, the optimal lattice

parameters, as well as the ratio of the energy of one mixed

crystal to the energy of another mixed crystal, can be predicted

much better than the energies themselves. In case of the

molecular crystals formed by the spin-active molecules, no

experimental data on sublimation energies at all have been

published so far. Although in ref. 1 we attempted to improve

the parameterization of the atom–atom potentials method

specially for better description of the geometry parameters

of the Fe(phen)2(NCS)2 and Fe(btz)2(NCS)2 crystals,28 we

could not calibrate the method for the energies of these

crystals. Therefore, it is reasonable to assume that the enthalpies

of mixed crystals calculated with some parameterization

system always contain systematic errors in the energy scale,

unless special calibration against the experimental enthalpies is

undertaken, and that these systematic errors will be different

for different parameterization systems.

In the case of the Fe(btz)2(NCS)2 mixed crystals, the

agreement between the results obtained with use of the

Lennard-Jones potential on the one hand and those coming

from the Buckingham potentials on the other hand is much

worse (see Table 4). However, the main source of the observed

discrepancy is the systematic error as well, and the mean-square

difference of the energies calculated with the different potentials

can be decreased three times by the rescaling described in the

previous paragraph—from 0.6 kcal mol�1 to 0.2 kcal mol�1.

Finally, in the case of the Fe(bpz)2(bipy) mixed crystals, the

correlation coefficient between the enthalpies found with the

Lennard-Jones and Buckingham potentials equals to 0.947,

and the mean-square difference between them is 0.52 kcal mol�1.

After linear elimination of the systematic error the mean-square

difference decreases ten times (to 0.05 kcal mol�1). There is no

difference between the modified Buckingham potential and the

non-modified one for this substance.

To sum up, though the mean-square difference between the

DH values estimated with different atom–atom potentials may

reach 0.5–0.6 kcal mol�1, corrections for the systematic errors

arising from uncertainty in the scale of A and B parameters

decrease these discrepancies to 0.05–0.2 kcal mol�1.
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